
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964690, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Real-time Scheduling of Massive Data in
Time Sensitive Networks with a Limited
Number of Schedule Entries
XI JIN1,2,3, CHANGQING XIA1,2,3, NAN GUAN4, CHI XU1,2,3, DONG LI1,2,3, YUE YIN5, and PENG
ZENG1,2,3
1State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, China
2Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, China
3Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, China
4Department of Computing, Hong Kong Polytechnic University, Hong Kong
5School of Economics, Liaoning University, China

Corresponding author: Xi Jin (e-mail: xijin@ieee.org); Peng Zeng (e-mail: zp@sia.cn)

This work was partially supported by National Key Research and Development Program of China (2018YFB1700200), National Natural
Science Foundation of China (61972389, 61903356 and 61803368), Youth Innovation Promotion Association of the Chinese Academy of
Sciences, Liaoning Provincial Natural Science Foundation of China (2019-YQ-09, 20180520029 and 20180540114), and China
Postdoctoral Science Foundation (2019M661156).

ABSTRACT Time sensitive networks support deterministic schedules over Ethernet networks. Due to their
high determinism, high reliability and high bandwidth, they have been considered as a good choice for the
backbone network of industrial internet of things. In industrial applications, the backbone network connects
multiple industrial field networks together and has to carry massive real-time packets. However, the off-the-
shelf time-sensitive network (TSN) switches can deterministically schedule no more than 1024 real-time
flows due to the limited number of schedule table entries. The excess real-time flows have to be delivered by
best-effort services because the switch only supports the two scheduling services. The best-effort services
can reduce average delay, but cannot guarantee the hard real-time constraints of industrial applications. To
make the limited number of schedule table entries support more real-time flows, first, we relax scheduling
rules to reduce the requirement for schedule table entries and formulate the process of transmitting packets
as a satisfiability modulo theories (SMT) specification. Then, we divide the SMT specification into multiple
optimization modulo theories (OMT) specifications so that the execution time of solvers can be reduced to
an acceptable range. Second, we propose fast heuristic algorithms that combine schedule tables and packet
injection control to eliminate scheduling conflicts. Finally, we conduct extensive evaluations. The evaluation
results indicate that, compared to existing algorithms, our proposed algorithm requires only one-twentieth
the number of schedule entries to schedule the same flow set.

INDEX TERMS Industrial Internet of Things, Massive Data, Real-time Scheduling, Time Sensitive
Networks.

I. INTRODUCTION

INDUSTRIAL internet of things (IIoT) has changed the
way that manufacturing is carried out [1]. For example,

IIoT supplies connectivity between customers and produc-
tion lines so that customers can guide the production process
directly [2], and the IIoT connectivity allows data exchange
among all industrial devices so that the whole production
process can change rapidly to adapt to new products [3].
Industrial networks are the most fundamental and important
part of IIoT. To satisfy the strict requirements of industrial

applications, industrial networks have to transmit data deter-
ministically, such as precisely transmitting control data, sup-
plying adequate bandwidth for video streams, and managing
each packet in massive-machine-type communications.

Many industrial wired and wireless networks have been
proposed to handle these high-requirement scenarios, e.g.,
WIA-FA [4], WIA-PA [5], RT-WiFi [6], WirelessHP [7],
WirelessHART [8], TTEthernet [9], and time sensitive net-
works (TSNs) [10]. However, there is still no single network
framework that can guarantee all industrial requirements.

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964690, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Heterogeneous networks constituted by a wired backbone
network and multiple wireless field networks are considered
as the future solutions of industrial networks, for example,
the wired fronthaul/backhaul and cell sites in 5G [11]. The
wireless field networks, which are flexible and easy to de-
ploy, connect massive devices to the upper management; the
wired backbone network, which has high bandwidth and high
reliability, carries all data transmitted by the wireless field
networks. Thus, the wired backbone network should support
all performance-optimization technologies that wireless field
networks have done. If not, the optimization effect achieved
in wireless field networks will be reduced, and even totally
disappear, in wired backbone networks. For example, when
the backbone network supports only best-effort services,
regardless of which field network is used, the end-to-end
delay of a packet is still uncontrollable and nondeterministic.

TSNs are a good choice for the backbone network because
they support deterministic schedules over Ethernet network-
s, and provide high-bandwidth, high-reliability and high-
determinism connectivity. Almost all performance indicators
of TSNs are better than those of wireless field networks.
However, a performance-optimization problem that wireless
field networks do not need to consider but that backbone
networks have to handle is how to transmit massive, real-time
data deterministically. Wireless field networks support real-
time communications, but do not need to transmit massive
data because a single field network will not cover a large-
scale region. However, when multiple field networks submit
their data to the backbone TSN, the backbone TSN must
consider how to handle massive data. There is no related
work that has considered how to schedule massive data in
TSNs under real-time constraints (as described in Section II).
Therefore, in this paper, we will propose real-time scheduling
algorithms that can transmit massive data deterministically in
TSNs.

There are two challenges to carrying out real-time schedul-
ing of massive data. First, in off-the-shelf TSN switches,
e.g., [12]–[14], the limited capacity of schedule tables makes
it difficult for them to handle massive data. TSN switches
support both deterministic and nondeterministic communi-
cations. For deterministic communications, the schedule ta-
bles record the precise times to control egress ports so that
the transmitting times of forwarded flows can be precisely
controlled. However, due to the limited number of schedule
table entries in switch chips, the off-the-shelf TSN switches
support no more than 1024 deterministic data flows [12]–
[14]. The excess deterministic data flows have to be delivered
by best-effort services. Although a new large-capacity chip
can be created to support more deterministic data flows, the
relevant time costs and price costs cannot be ignored. Second,
massive data with different requirements cannot be aggregat-
ed to reduce the difficulty of scheduling. TSN switch chips do
not support aggregating functions. Only micro control units
(MCUs) that are connected to switch chips can aggregate
data packets. However, if data packets are sent to MCUs,
the exchange of data packets between the switch chips and

MCUs will require plenty of time and thus reduce the system
performance. Therefore, data can be aggregated only before
they are injected into the TSNs and disaggregated only when
they leave the TSNs, i.e., the aggregated data packets must
have the same path, the same release time and the same
real-time constraint. This severe aggregation is not suitable
for flexible and diversified machine-to-machine communica-
tions. Therefore, our proposed scheduling algorithms should
be constrained by the capacity of schedule tables and non-
aggregated.

To schedule massive real-time data packets using a limited
number of schedule entries, we make the following contribu-
tions.

(1) In some cases, TSN switches do not need to record
port controls for each packet. For example, when a switch
forwards packets immediately after it receives them, the pre-
cise transmitting time is determined by its previous switch.
Thus, we relax the constraint that switches have to record
the port controls for all packets and formulate the process
of transmitting packets as a satisfiability modulo theories
(SMT) specification [15]. However, the execution time of
SMT solvers increase exponentially with the problem size.
To obtain a feasible solution in an acceptable time, we divide
the SMT specification into multiple optimization modulo
theories (OMT) specifications [16]. The dividing strategy
makes the execution times of solvers increase linearly with
the problem size. Our evaluations indicate that in 2 days,
the OMT-based algorithm can solve 40000 packets, while
the SMT-based algorithm can solve only approximately 400
packets.

(2) The problem we focus on is NP-complete. There is
no polynomial time algorithm for finding a solution for our
problem. Hence, we adopt heuristic algorithms to improve
the scalability of our work. First, the NGC algorithm is
presented to eliminate all conflicts by adjusting the injection
times. In this algorithm, switches do not need to record any
time to transmit packets, and once a packet is injected into
the network, it can be transmitted to its destination without
interruption. Then, we analyze the upper bound of end-to-end
delays in this algorithm and find two factors that make data
flows difficult to schedule. Based on the analysis, we propose
the MF algorithm that uses schedule entries to support post-
scheduling adjustments. The evaluation results indicate that,
compared to existing algorithms, the MF algorithm requires
only one-twentieth the number of schedule entries to sched-
ule the same 32000 packets.

The rest of the paper is as follows: Section II first reviews
two categories of related work, including specification-based
algorithms and heuristic algorithms, and then explains why
the existing work cannot be used in our problem. Section
III details our system model and problem. Section IV and
Section V propose specification-based algorithms and heuris-
tic algorithms to solve our problem, respectively. Section
VI evaluates our proposed algorithms based on massive test
cases. Section VII discusses the underlying meaning of this
paper. Section VIII concludes the paper.

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964690, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

II. RELATED WORK
Real-time scheduling has been widely studied in uniproces-
sor/multiprocessor systems [17], [18] and networked sys-
tems [19], [20]. However, the algorithms designed for other
systems cannot obtain the expected results in TSNs due to
their special transmitting mechanisms. TSNs represent a set
of IEEE standards, in which the IEEE standard 802.1Qbv
defines the architecture of TSN schedulers, but does not
specify scheduling algorithms. In some recent papers, the
TSN scheduling problem has been considered. The work in
[21] formulates the scheduling problem as SMT and OMT
problems, and then calculates static schedules using an off-
the-shelf solver. In addition to SMT/OMT solvers, integer
linear programming (ILP) solvers can be used to generate
schedules. The work in [22] proposes various ILP formula-
tions to generate incremental schedules, and its results are
close to the optimal solutions of the corresponding static
scheduling problem. The work in [23] formulates the joint
routing and scheduling problem as an ILP and explores the
real limitations by evaluating extensive test cases with widely
varying parameters. The work in [24] uses an ILP approach
to maximize the resources available for audio-video-bridging
and best-effort traffic in TSNs. Although the results obtained
by off-the-shelf solvers are optimal or close to optimal, their
execution times become unacceptable as the system size
increases.

Heuristic algorithms are faster than off-the-shelf solvers
and have been used in TSNs. The work in [25] proposes a
K-shortest path heuristic and a meta-heuristic randomized
adaptive search procedure to solve the joint routing and
scheduling problem for time-triggered traffic, and at the same
time reduce the end-to-end delays of audio-video-bridging
traffic. The work in [26] develops two algorithms to schedule
multicast time-triggered flows: the first algorithm is based on
genetic algorithm and generates schedules under real-time
constraints; the second one is based on fixed routings and
implemented as a list scheduler. The work in [27] presents a
heuristic incremental scheduling algorithm to minimize the
impact of reconfiguring schedules on existing flows. The
work in [28] proposes a configuration agent architecture
and a simple scheduling heuristic such that the schedules
of dynamic flows can be quickly generated and configured.
However, these algorithms do not consider the capacity limi-
tation of network switches.

The work in [29], [30] introduces capacity limitations into
their problem models to make the scheduling problem more
similar to real systems. However, the method proposed in
[29] generates schedules using solvers, and its formulation is
to optimize the individual jitter of each flow; the objective
optimized in [30] is to minimize the maximal end-to-end
delay, i.e., the problem focused on by [30] is not a typical
real-time scheduling problem with deadlines. The work [31]
splits a problem into several subproblems so that capacity
limitations can be ignored. Although the similar method can
be used in TSNs to distribute data flows to multiple switches,
the cost of the extra switches is unaffordable to users when

massive flows need to be distributed. In contrast, our pro-
posed algorithms are for a normal real-time scheduling model
with a limited number of schedule entries and can quickly
generate schedules for massive data packets.

III. SYSTEM MODEL AND PROBLEM STATEMENT
In this section, we will detail our system model and problem.
The symbols used in this paper is summarized in Appendix.

A. NETWORK
A time-sensitive network is characterized by a three-tuple
< N,W,L >. The node set N = {n1, n2, ...} includes all
switches and gateways. The switch set W is a subset of N .
Gateways connect other networks, e.g., RT-WiFi, WIA-PA,
and WirelessHP, to TSNs. We use ni,j to denote the j-th port
of switch ni. The element li,g in the link set L denotes that
there is a cable between nodes ni and ng . Our algorithms
are suitable for all topologies. To describe the model more
clearly, we specify the network topology is mesh since mesh
topologies can reduce to the other topologies.

The architecture of a TSN switch with 4 ports is shown
in FIGURE 1. Ports and cables are both full-duplex. After
a packet is injected into a switch from an ingress port, it is
switched to its destination egress port according to routing
tables, and then stored into a queue of the egress port. Each
egress port has multiple queues, and the queue with a smaller
ID has lower priority. The packet is stored in the queue that
has the same ID as that of the priority code point (PCP)
segment in the packet header. To avoid conflicts among
packets, one queue is used by at most one packet at a time
[21]. Each queue connects to a gate. If the gate is opened,
the packet stored in the queue is allowed to use the egress
port. Otherwise, the packet waits until the gate is opened.
When multiple gates are opened, the nonempty queue with
the highest priority uses the egress port.

Gates are controlled by schedule tables. Each entry in
the table contains time, port, and gate states [13], [14]. For
example, in FIGURE 1, at Time 1, the first entry is applied
to Port A, and gate states 1000 0000 mean that only the gate
of the first queue, i.e., Queue 0, is opened, and the others
are closed. Then, at Time 2, the gate states change to 0100
0000 that mean the gate of Queue 0 is closed, and the gate of
Queue 1 is opened. A switch contains at most T entries. If not
all entries are used, the time of unavailable entries is marked
as 0. Available entries are stored in the order of time, i.e., if
Time i and Time j are not zero and i > j, then Time i > Time
j. After all available entries are executed, the first entry is
executed again. Note that the last available entry has the same
control information as that of the first entry because the last
entry is added to mark the running time of the penultimate
entry. The limitation of a table capacity T is the main reason
why it is difficult for TSN switches to support massive data
communications.

Some related papers adopt other kinds of schedule tables.
For example, in the paper [29], a switch has multiple schedule
tables (also called gate control lists), and a schedule table

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964690, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Switch
engine

Port A
(ingress)

Queue 0

Queue 1

Queue 7

Gate

Gate

Gate

Port A
(egress)... ...

Port B
(egress)

... ...

Port C
(egress)

... ...

Port D
(egress)

... ...

Schedule table

Time 1, Port A: 1000 0000
Time 2, Port A: 0100 0000
Time 3, Port C: 0011 1111
Time 4, Port D: 1100 0000...

Port D
(ingress)

Port C
(ingress)

Port B
(ingress)

FIGURE 1: Architecture of a TSN switch with 4 ports.

corresponds to only one port. Thus, schedule entries do not
need to contain port information. Regardless of which kind of
schedule tables is adopted, our proposed algorithms can still
be used as long as one entry corresponds to only one port.

B. DATA FLOW
Industrial data flows can be divided into two categories:
critical flows and noncritical flows. Critical flows are hard
real-time, while noncritical flows are best-effort. Our pro-
posed algorithms schedule only critical flows. The remaining
resources can be used by noncritical flows. In the following,
if no specific description is given, flows refer to critical
flows. A flow fa in the flow set F is characterized by a
five-tuple < pa, da, qa, γa,Πa >, which denote the period,
relative deadline, queue ID, end-to-end delay, and routing
path, respectively. Each flow generates a packet periodically
with a period pa. In addition to the backbone TSN, packets
are transmitted in field networks. Hence, two time intervals in
a period are occupied by field networks as shown in FIGURE
2(a). Only the middle interval belongs to the backbone TSN,
i.e., our proposed algorithms only consider the middle inter-
vals. The scheduling problem between field networks and the
backbone network exceeds the scope of our paper and is not
considered here. The lengths of these time intervals can be
zero when sources or destinations are gateways. This does
not impact our proposed algorithms.

If flows are allowed to start at any time, the schedules
cannot be generated due to the unknown conflicts among
packets. Thus, we adjust flows to make them start at the
same time. The adjustment is easy to implement because all
nodes are time synchronized, and the gateways can control
the injection times of flows. Then, relative deadlines are
equal to the available time intervals in which packets can
be transmitted in TSNs as shown in FIGURE 2(b), i.e.,
da ≤ pa. Flow fa releases its k-th packet at time pa × k+ 1,
and its absolute deadline is pa × k + da. We consider

Time
interval 1

Source field
network

Time
interval 2

Destination
field network

Time
interval 1

Time
interval 2

1st period 2nd period

1st period 2nd period

1st period 2nd period

Flow 1

Flow 2

Flow 3

...

...

...

TSN

(a) Occupied intervals in a period.

deadlinedeadline
1st period 2nd period

1st period 2nd period

1st period 2nd period

Flow 1

Flow 2

Flow 3

...

...

...

deadline deadline
Start
time

(b) Adjusting offsets.

FIGURE 2: Flow model.

In
Q

Q

G

G
Out... ...

Switch A Switch B

γ
+

Out

Gateway

In
Q

Q

G

G
... ...

time

Gateway

Switch A

Switch B

γ
+

Receiving

delay

Queuing
delay

Transmission
delay

Processing
delay

FIGURE 3: Delay of a packet in a switch.

only how to schedule in the first hyperperiod H , which is
defined as the least common multiple of their periods, i.e.,
H = LCM{p1, p2, ...}, because after the first hyperperiod,
the subsequent schedules are periodically repeated.

The queue ID qa is written into the PCP segment in the
packet header before packets are injected into the TSNs. The
routing path Πa is a node set, i.e., Πa = {πa1, πa2, ...}
and Πa ⊆ N . Since routing is already well-studied [32],
[33], we do not propose any routing algorithm and consider
that the routes are already generated based on some existing
algorithms.

The delay of a packet is composed of four delays, in-
cluding the receiving delay, processing delay, queuing delay,
and transmission delay γ+

a , as shown in FIGURE 3. The
receiving delay is from the time that the packet enters the
switch to the time that the packet is completely received.
The processing delay is needed by the switch engine. Since

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964690, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

the processing delay is less than 1µs, we ignore it in our
problem. Then, the packet might be blocked in the queue.
Thus, the queuing delay depends on schedules, and can be
zero. The transmission delay is the amount of time needed to
serialize and propagate the packet on the cable. Serializing
delays and propagation delays should be listed separately
because queues are still occupied during serializing delays.
However, propagating a packet in a single cable requires at
most 556ns [34], and in TSNs, the synchronization error is
approximately 1µs. Therefore, we merge propagation delays
and serializing delays together. Queues are occupied in all
of the delays. The time durations spent in different nodes
overlap each other since different parts of a serialized packet
are processed in two adjacent nodes simultaneously. We use
delay γa to denote the time it takes for a packet to transmit
from its source to its destination without interruption.

TSNs adopt the IEEE 802.1AS standard to synchronize
nodes. The only effect of the synchronization standard on
our problem is that time synchronization introduces time
errors to transmission delays. To simplify the description, we
consider that the time synchronization errors are contained
in transmission delays and will not be mentioned in the
following.

C. SCHEDULING PROBLEM
To deterministically schedule massive data packets, the fol-
lowing four rules have to be followed.

1) A queue cannot be shared between critical packets and
noncritical packets even at different times. Noncritical pack-
ets are uncontrollable. We cannot predict when noncritical
packets will occupy queues and how noncritical packets will
affect critical packets. Therefore, to make critical packets
controllable, we assign several dedicated queues to them, and
then the remaining queues can be used by noncritical queues.

2) Although critical packets and noncritical packets share
the same network resources, scheduling critical packets does
not require considering the noncritical packets. To maximize
the bandwidth of noncritical data flows, their gates are always
opened. However, noncritical transmissions cannot preempt
critical transmissions because the queues used by critical
packets have higher priorities than those used by noncritical
packets. Although, critical packets can preempt noncritical
packets, we still do not need to consider the preemption
process. This is because guard bands, which are inserted
before critical packets to keep them from being affected by
unfinished noncritical packets, can be integrated into noncrit-
ical packets.

3) When multiple queues have critical packets, they cannot
be opened at the same time. For example, there are two
packets in two queues, and their gates are opened. In a regular
case, the high-priority packet can use the egress port, and the
low-priority packet is blocked. However, if the high-priority
packet loses, the low-priority packet will be sent to the cable
before its expected time. Then, the subsequent transmissions
will be affected, and their determinism will be difficult to
guarantee. Therefore, we do not permit the queues that are

storing critical packets to be opened at the same time.
4) If a critical queue has no packets, its gate can remain

open. Note that even though a high-priority gate is opened,
the low-priority queue with opened gate can use the egress
port as long as there is no packet in the higher-priority
queue [35]. Based on this rule, we can reduce the number
of closings, i.e., the number of table entries.

Therefore, based on the four scheduling rules, given the
network < N,W,L >, the critical flow set F and the
number of queues used by critical packets, our objective
is to generate schedules for all critical flows to satisfy the
following requirements.

• Real-time requirement: All of the critical packets are
delivered to destinations before their deadlines.

• No resource conflict: Every queue and every link serves
at most one packet at any time.

• Resource limitation: For each switch, the number of
schedule entries used is not greater than the limitation
T .

Since the schedules must be deterministic, we adopt
fine-grained scheduling algorithms. Comparing with coarse-
grained algorithms that specify a long time duration to trans-
mit all of the critical packets, our fine-grained algorithms will
assign a link and a time duration to each transmission so that
end-to-end delays are controllable and deterministic.

A flow set is schedulable, if it has a feasible schedule that
meets all the requirements. A scheduling algorithm is called
optimal, if it can find a feasible schedule whenever one exists.
If there are enough table entries to close the gates after each
packet is sent, our problem is the same as the problem in
[29]. Since the problem in [29] is NP-complete, our problem
is also NP-complete.

To solve our NP-complete problem, we propose multiple
algorithms that are briefly introduced in FIGURE 4. First, s-
ince SMT algorithms are optimal for NP-complete problems,
we use SMT specifications to state our problem, and use SMT
solvers to generate schedules (in Section IV-A). However,
the execution time of SMT solvers increases exponentially
with the problem size. For simple scheduling problems, SMT
solvers have to spend tens of minuets to generate the sched-
ules of tens of flows [21], [29]. Thus, SMT solvers cannot
solve our SMT specification in acceptable time because our
problem model is more complex than that of any existing
work. Therefore, based on the SMT specification we propose
an OMT-based algorithm that can significantly reduce the
execution time (in Section IV-B).

Second, since the OMT-based algorithm is still restricted
by third-party solvers, to further improve the scalability of
our proposed algorithms, we propose heuristic algorithms to
make a tradeoff between performance and efficiency. Our
first heuristic algorithm adopts the minimum number of
schedule entries to transmit packets (in Section V-A), and
then we analyze why the first heuristic algorithm cannot
schedule more packets (in Section V-B). Based on the analy-
sis, we propose a second heuristic algorithm that adopts the

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964690, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Our problem (NP-complete)

SMT specification
Eq. (1)-(13)

No-gate-closing (NGC)
scheduling algorithm

Algorithm 3

Analysis
Eq. (17)-(23)

Move-forward (MF)
scheduling algorithm

Algorithm 5 (invoking
Algorithm 4)

Section IV-A

Section IV-B

Section V-A

Section V-B

Section V-C

OMT specification
Eq. (1)-(16)

Queue Assignment
Algorithm 1

OMT-based
scheduling algorithm

Algorithm 2

Specification Heuristic algorithm

Improve
scalability Find negative

effect factors

Reduce the effect
of the factors

FIGURE 4: Overview.

unused schedule entries to transmit more packets (in Section
V-C).

IV. ALGORITHMS BASED ON SMT/OMT
SMT specifications are based on first-order logic, and a
SMT problem is to determine whether the specification is
satisfiable or not. OMT is an extension of SMT and combines
SMT with optimization procedures. To describe our problem
in detail, we formulate the problem as an SMT specification.
Then, we divide the problem into multiple OMT specifica-
tions to improve its scalability.

A. SMT SPECIFICATION
Our objective is to assign queues to flows and com-
pute a schedule table Ei for each switch ni (∀ni ∈
W). Each entry ei,y in table Ei is denoted as <
ti,y, vi,y,1, ..., vi,y,V , ci,y,1, ..., ci,y,Q >. The entry starts to
run at time ti,y . Not all entries in the schedule table Ei
are used. If the entry is not used, its ti,y is set to 0. A
switch has V ports, and each egress port has Q queues. If
vi,y,j = 1 (j ∈ [1, V]), entry ei,y is available to Port j. If
ci,y,r = r (r ∈ [1, Q]), the gate of the r-th queue is opened.
Otherwise, it is closed. We use symbol k (k ∈ [0, Hpa)) to
distinguish the packets that are generated by flow fa. For the
k-th packet generated by flow fa, its b-th hop transmission is
called transmission τka,b. We use αka,b and βka,b to denote the
starting time and the ending time of transmission τka,b, i.e.,
βka,b −αka,b = γ+

a . Thus, the SMT problem has to respect the
following constraints.

1) Range constraint: Based on our model and problem, the
ranges of all variables are as follows.

∀ni ∈W, ∀y ∈ [2, T], ti,1 = 0,

((ti,y = 0) ∧
∧

∀z∈[y+1,T]

(ti,z = 0))∨

((ti,y > 0) ∧ (1 ≤ ti,y−1 < ti,y ≤ H)).

(1)

∀ni ∈W, ∀y ∈ [1, T],∀r ∈ [1, Q], ci,y,r ∈ {0, r}. (2)

∀ni ∈W, ∀y ∈ [1, T],∀j ∈ [1, V], vi,y,j ∈ {0, 1}. (3)

∀fa ∈ F, 1 ≤ qa ≤ Q. (4)

∀fa ∈ F,∀b ∈ [1, |Πa|),∀k ∈ [0,
H

pa
),

k × pa + 1 ≤ αka,b < βka,b ≤ da + k × pa,
βka,b − αka,b = γ+

a .

(5)

2) Path sequence constraint: In a routing path, the (b+ 1)-
th hop starts after the b-th hop finishes.

∀fa ∈ F,∀b ∈ [1, |Πa|−1),∀k ∈ [0,
H

pa
), αka,b+1 > βka,b.

(6)

3) Real-time constraint: All packets have to be delivered
to their destinations before their absolute deadlines.

∀fa ∈ F,∀k ∈ [0,
H

pa
), βka,|Πa|−1 ≤ da + k × pa. (7)

This equation has been included in Constraint 1).
4) Link conflict constraint: If two packets use the same

link, the times during which they pass through the link cannot
overlap.

∀fa, fg ∈ F, a 6= g,∀b ∈ [1, |Πa|),∀h ∈ [1, |Πg|),

∀k ∈ [0,
H

pa
),∀m ∈ [0,

H

pg
),

¬(πa,b = πg,h) ∨ ¬(πa,b+1 = πg,h+1)∨
(αka,b > βmg,h) ∨ (αmg,h > βka,b).

(8)

5) Queue conflict constraint: If two packets use the same
queue, the times at which they are stored in the queue cannot
overlap.

∀fa, fg ∈ F, a 6= g,∀b ∈ [2, |Πa|),∀h ∈ [2, |Πg|),

∀k ∈ [0,
H

pa
),∀m ∈ [0,

H

pg
),

¬(πa,b = πg,h) ∨ ¬(πa,b+1 = πg,h+1) ∨ ¬(qa = qg)∨
(βka,b < αmg,h−1) ∨ (βmg,h < αka,b−1).

(9)

6) Time validity constraint: Only schedule table Ei is
recorded in the TSN switch. There must be a relationship
between αka,b, β

k
a,b and Ei so that the schedules in switches

can guarantee the above constraints. We know that βka,b is
equal to αka,b plus the transmission delay γ+

a . Therefore, we
consider only αka,b in this constraint. αka,b has to satisfy the
condition that it is the first opening time after the end of its
previous hop. We use A(x) to check the condition. Thus,

∀fa ∈ F,∀b ∈ [2, |Πa|), port(fa, πa,b) = ni,j ,∀k ∈ [0,
H

pa
),∨

∀g∈[k×pa+1,k×pa+da]

((αka,b = g) ∧A(g)),

(10)

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964690, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

where port(fa, πa,b) denotes the port that in node πa,b, fa is
sent from, and

A(x) =((x > βka,b−1) ∧B(x))∧∧
∀h∈[k×pa+1,x)

((h ≤ βka,b−1) ∨ ¬B(h)). (11)

b starts from 2 because the first node in the routing path is not
a TSN switch. In A(x), if the value x satisfies the condition,
and if, before the value x, there is no value that satisfies the
condition, thenA(x) is true.B(x) is used to check if the gate
is opened at time x.

B(x) =
∨

∀ei,y∈Ei

((ti,y = 0) ∨ (vi,y,j ∧
∨

∀r∈[1,Q]

(ci,y,r = qa)∧

∧
∀ei,z∈Ei,z 6=y

((ti,z = 0) ∨ ¬vi,z,j ∨ (ti,z < ti,y ≤ x)∨

(ti,z > x)))).

(12)

If there exists an entry ei,y that is the last entry to control the
queue of flow fa before time x, and if the entry is to open the
queue of flow fa, then B(x) is true.

7) Time duration validity constraint: During the time du-
ration [αka,b, β

k
a,b], the corresponding gate must always be

opened to send τka,b continuously.

∀fa ∈ F,∀k ∈ [0,
H

pa
),∀b ∈ [2, |Πa|), part(fa, πa,b) = ni,j ,∧

∀ei,y∈Ei

((ti,y = 0) ∨ ¬vi,y,j ∨ ((ti,y < αka,b) ∨ (βka,b < ti,y)

∨ ((αka,b ≤ ti,y ≤ βka,b) ∧
∨

∀r∈[1,Q]

(ci,y,r = qa)))).

(13)

If an entry is in the time duration, i.e., αka,b ≤ ti,y ≤ βka,b, the
corresponding gate must be opened.

B. AN ALGORITHM BASED ON OMT
As described in FIGURE 4, to improve the scalability of our
proposed algorithms, we break down an SMT problem into
multiple OMT problems. These OMT problems are the sub-
problems of the original SMT problem and independent of
each other. For each subproblem, an OMT solver needs to be
invoked once to schedule ∆ packets, where ∆ is a parameter
given by users or selected based on the execution time of
the OMT solver to make a trade-off between execution time
and efficiency. As the problem size increases, the number
of subproblems increases, while the subproblem size is not
changed. Thus, the OMT solver is invoked more times, but
the execution time of each invocation is basically unchanged.
Therefore, the execution time of scheduling all the packets
increases linearly with the problem size.

Before dividing the original problem, we must assign
queues to flows because if the queue assignment is divided
into multiple subproblems, the packets that belong in the

same flow may be assigned to different queues. Algorithm
1 shows our assignment method. The heavier the workload
is, the greater the number of conflicts that occur, resulting in
more gate controls being needed to isolate transmissions. Our
objective of assigning queues is to balance their workloads.

Algorithm 1 QA (Queue Assignment)
Input: a network < N,W,L >, a flow set F
Output: ∀fa ∈ F, qa

1: ∀fa ∈ F, ρa = γa
da

;
2: sort flows in decreasing order of their utilization, where
f1 has the largest utilization;

3: for a = 1 to |F | do
4: h = arg min∀g∈[1,Q]{max∀ni,j∈Πa

{ρ̂1,i,j,g}};
5: qa is assigned the h-th queue;
6: ∀ni,j ∈ Πa, ρ̂1,i,j,h = ρ̂1,i,j,h + ρa;
7: return all qa;

In Algorithm 1, we first calculate the utilization ρa that a
flow introduces to a node (line 1). Then, each flow selects
the queue with the minimal workload to use (lines 3–5),
and the utilization of the selected queue is updated (line
6). ρ̂t,i,j,g denotes the utilization of the g-th queue in ni,j
at time t. To find the maximum ρ̂, all possible t should be
checked. However, we know that all flows release packets at
time 1, i.e., the maximum utilization must occur at time 1.
Therefore, we consider only ρ̂1,−,−,− in the algorithm. The
time complexity of Algorithm 1 is O(|F ||Q||N |).

Based on the result of Algorithm 1, we divide the original
problem into multiple subproblems. There are

∑
∀fa∈F

H
pa

packets in a hyperperiod. We divide them into d
∑

∀fa∈F
H
pa

∆ e
subsets. First, we sort all packets in the order of their
earliest deadline first (EDF) priorities. EDF priorities mean
that a packet with an earlier deadline has a higher pri-
ority. In the sorted packet set {s1, s2, ...}, the elements
su×∆+1, ..., s(u+1)×∆ are assigned to the subset Su. This
assignment method schedules conflicting packets in the same
subset so that the OMT solver can resolve conflicts more
efficiently.

Since different packet subsets require different numbers of
gate control entries, we cannot determine how many entries
should be used in each subset. Therefore, the objective of
each OMT subproblem is to minimize the maximum number
of entries used, i.e.,

obj. min ē, (14)

subject to

∀ni ∈W,
∑

∀ei,y∈Ei

λi,y ≤ ē, (15)

∀ni ∈W,
∧

∀ei,y∈Ei

(((ti,y = 0) ∧ (λi,y = 0))∨

((ti,y > 0) ∧ (λi,y = 1)),

(16)

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964690, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

where ē denotes the maximum number of entries used among
all switches, and λi,y denotes if the corresponding entries are
used. In addition to the two constraints, Constraints 1) to 7)
also need to be guaranteed.

Algorithm 2 OMT-based scheduling algorithm
Input: network < N,W,L >, flow set F
Output: all schedule tables

1: for each Su do
2: if OMT (Su) found a solution then
3: for each packet in Su do
4: the variables αka,b, β

k
a,b (∀b ∈ [1, |Πa| − 1))

are assumed to be constants in the following
calculation;

5: for each ei,y do
6: if ti,y > 0 then
7: the entry ei,y can no longer be changed;
8: else
9: return FAIL;

10: return all Ei;

Algorithm 2 shows the process of invoking the OMT
solver. For each subset Su, the OMT solver is invoked to
find an optimal solution (lines 1-2). Then, all the variables
in the solution are set to constants and cannot be changed in
subsequent invocations (lines 3-7). This process is repeated
until all subsets finish. Except when invoking the OMT
solver, the other codes have O(n) time complexity. n is
approximately the number of packets.

V. HEURISTIC SCHEDULING ALGORITHMS
To handle massive data, scheduling algorithms should be
simple and fast. In this section, we first present a fast
scheduling algorithm (in Section V-A), and analyze the end-
to-end delays (in Section V-B). Then, based on the analytic
result, we modify the fast scheduling algorithm to improve
its efficiency (in Section V-C).

A. NO-GATE-CLOSING SCHEDULING
There is a scheduling algorithm that can use one entry and
one queue to transmit all packets. We call it the no-gate-
closing (NGC) scheduling algorithm. In the NGC algorithm,
all gates are always opened. After a switch receives a whole
packet, it sends the packet to the next hop immediately.
Source nodes control the injection times of all packets to
avoid conflicts, and no queue is needed to block packets.
Therefore, for each egress port, only one queue is used to
buffer packets. This transmission rule is similar to that in no-
wait packet scheduling [30]. However, we focus on a differ-
ent problem model, and the no-wait scheduling algorithm is
not suitable for massive data due to its execution time.

The NGC algorithm (as shown in Algorithm 3) uses the
classical EDF policy to schedule massive data since it has
high real-time performance [18] in many real-time systems.
The schedule is nonpreemptive. Once packets start to be

Algorithm 3 NGC (No-gate-closing scheduling)
Input: network < N,W,L >, flow set F
Output: injection times ηka

1: S = S′ = ∅;
2: for each t ∈ [1, H] do
3: for each fa ∈ F do
4: if t mod pa == 1 then
5: S = S + {ska}, where k = b tpa c;
6: while S 6= ∅ do
7: find a packet ska with the highest EDF priority in S;
8: S = S − {ska};
9: if packet ska misses its deadline then

10: return FAIL;
11: if NoConflict(ska, t) then
12: ηka = t;
13: else
14: S′ = S′ + {ska};
15: S = S′;
16: if S 6= ∅ then
17: return FAIL;
18: else
19: return all ηka ;

transmitted, they cannot be blocked. In a hyperperiod, the
network runs from time 1 to timeH . At each time t, the newly
released packets are added to the set S, which contains all re-
leased but unscheduled packets (lines 2–5). Then, the highest
priority packet in set S is selected (lines 7–8) and checked
by the function NoConflict() to determine whether it can
be scheduled without conflicts at time t (line 11). As shown
the example in FIGURE 5(a), the paths of flow f1 and f2

are {A,C,D,E, F} and {B,C,D,E,G}, respectively, and
the corresponding transmissions are shown in FIGURE 5(b)
and (c). Up arrows denote release times, and down arrows
are deadlines. There is no time gap between successive
transmissions since transmissions are not blocked. The two
flows generate their first packets at time 1. The packet of
f1 is first transmitted since it has a higher EDF priority
than f2. If the packet of f2 also starts to be transmitted at
time 1, the two packets will conflict in node C as shown in
FIGURE 5(b). Hence, the packet of f2 cannot start at time
1. The packets that have conflicts with the scheduled packets
are removed to the set S′ to be checked again at the next
time (lines 13–15). After all packets in S are checked (line
6), the same process is repeated at the next time. Until the
packet does not conflict with the scheduled packets, it can be
injected into the network (line 12), such as the packet of f2

is injected at time 2 as shown in FIGURE 5(c). ηka denotes
the injection time of packet ska. The second packet of f1 is
released at time 33. However, due to the conflict with the first
packet of f2, its injection time is time 35. If a packet misses
its deadline (lines 9–10) or some packets are not scheduled
in a hyperperiod (lines 16–17), the algorithm cannot find
a feasible solution. Otherwise, the injecting times of all

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964690, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

packets are generated (lines 18-19). The time complexities
of lines 2, 3, 6, 7 and 11 are O(H), O(|F |), O(|S|), O(|S|)
and O(|Πa|), respectively. Therefore, the time complexity of
Algorithm 3 is O(|H||S|(|S|+ |Πa|)), i.e., O(n3).

A

B

DC E

F

G

f1

f2

f1: p1=32, d1=20
f2: p2=64, d2=50

(a) A network and flows.

20
A
B
C
D
E
F
G

1

conflict

8

time

(b) Transmission conflicts.

20 33 50 64
A
B
C
D
E
F
G

1 8 412 35
time

(c) Schedules without conflicts.

FIGURE 5: An example for Algorithm 3.

B. ANALYSIS
We analyze the worst-case end-to-end delay in Algorithm
3 so that we can find the key factors affecting the real-
time performance. In the following, we focus on the packet
ska, the worst-case end-to-end delay of which is denoted as
x. The delay x includes the end-to-end delay γa and the
conflict delay D(ska, x) introduced by other packets in the
time interval [σka , σ

k
a + x], where σka is the release time of ska

and is equal to pa × k + 1. Hence,

x = D(ska, x) + γa. (17)

First, we calculate D(ska, x). We use four packet sets
HB(ska), HA(ska), LB(ska), and LA(ska) to denote the four
kinds of packets that will introduce conflicts to packet ska. The
letterH (or L) indicates that the packets in the corresponding
sets have higher (or lower) EDF priorities than ska, and the
letterB (orA) indicates that the packets in the corresponding
sets are released no later than (or after) the release time σka
of packet ska. For example, the set LB includes the packets
that have lower priorities and are released no later than the
time σka . A lower-priority packet can delay a higher-priority
packet when the higher-priority packet has been blocked by
other packets, with the lower-priority packet beginning the
transmission process before the higher-priority packet. S-
ince critical packets cannot be preempted, the higher-priority

B
C
D
E
G

0 γg

A
C
D
E
F

0 γaμ1a,g μ2a,g μ1g,a μ2g,a

conflict

time time

FIGURE 6: Conflict time.

packet has to wait until the lower-priority packet releases the
shared resources. For the packet ska, we use the time interval
[µ1a,g, µ2a,g] to denote its conflict interval, where the earliest
conflict time µ1a,g of flow fa is the relative start time of
the first transmission that uses the same node as that of fg ,
and similarly, the last conflict time µ2a,g is the relative end
time of the last transmission conflicting with fg (as shown in
FIGURE 6). For each packet smg in the four sets, there must
be

[σmg + µ1g,a, σ
m
g + dg − (γg − µ2g,a)]∩

[σka + µ1a,g, σ
k
a + x− (γa − µ2a,g)] 6= ∅.

(18)

If not, smg does not affect the transmissions of ska.
Once we know the release times and deadlines of all the

packets, we can then find the packets of the four sets. Thus,

D(ska, x) =∑
∀smg ∈HB(ska)

DHB(ska, s
m
g) +

∑
∀smg ∈HA(ska)

DHA(ska, s
m
g)+

∑
∀smg ∈LB(ska)

DLB(ska, s
m
g) +

∑
∀smg ∈LA(ska)

DLA(ska, s
m
g).

(19)

The calculations of the four delays are as follows.

1) DHB

First, we consider all the transmissions of smg as being in
the time interval [σka , σ

k
a + x]. Thus, the delay introduced by

smg is
∑
∀t∈[1,γg] C(ska, s

m
g , t), where C(ska, s

m
g , t) = 1 if ska

conflicts with smg when it starts to be transmitted t time units
after smg ; otherwise, C(ska, s

m
g , t) = 0. In some cases, not all

the transmissions of smg are in the time interval [σka , σ
k
a + x].

As shown in FIGURE 7(a), if the front part of ska overlaps
with the rear part of smg , the length of the overlapping time is
σmg +dg−σka . Thus, when part of smg is in the conflict interval,
i.e., (σmg + dg − σka) < γg , only the last (σmg + dg − σka)
transmissions can introduce delay. Therefore, the delay is∑
∀t∈[γg−(σm

g +dg−σk
a),γg] C(ska, s

m
g , t). We obtain that

DHB =
∑

∀t∈[δHB ,γg]

C(ska, s
m
g , t), (20)

where δHB = min{1, γg − (σmg + dg − σka)}.

2) DHA

All packets in HA(ska) have higher EDF priorities and are
released after σka . Thus, compared to DHB , there is no case
where only some of the transmissions affect ska. Therefore,

DHA =
∑

∀t∈[1,γg]

C(ska, s
m
g , t). (21)

3) DLB

All packets in LB(ska) have lower EDF priorities and are
released no later than σka . In the worst case the latter γg − 1
transmissions will conflict with ska. This is the only difference

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964690, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

B
C
D
E
G

σm
g+dg

σk
a

[γg-(σm
g+dg-σk

a),γg]

σk
a +x

σm
g

time

(a) DHB .

B
C
D
E
G

σm
g+dg σk

a

[1,σk
a +x-σm

g]

σk
a +xσm

g

time

(b) DLA.

FIGURE 7: Some of the transmissions in a conflict interval.

between DHB and DLB . Therefore, the first transmission is
excluded, i.e.,

DLB =
∑

∀t∈[2,γg]

C(ska, s
m
g , t). (22)

4) DLA

All packets in LA(ska) have lower EDF priorities and are
released after ska. In the worst case, the latter γg − 1 trans-
missions will affect ska. As shown in FIGURE 7(b), the
overlapping time is σka + x− σmg . When γg > σka + x− σmg ,
i.e., only some of the transmissions will affect ska, and thus

DLA =
∑

∀t∈[2,δLA]

C(ska, s
m
g , t), (23)

where δLA = min{γg − (σmg + dg − σka − x), γg}.
Based on the above analysis and Equation (17), x can be

solved by the following recurrent relation:{
x0 = γa
xi+1 = D(ska, xi) + γa.

(24)

xi+1 is calculated repeatedly until xi+1 and xi have the same
value. Then, x is assigned as the final xi+1.

From the analysis, we know that there are two key factors
that delay flows. The first one is priority inversion, where
lower-priority packets delay higher-priority packets. This
weakens the efficiency of priorities. The second one is that
a packet may suffer all conflicts in series. To cover the
worst case, the analysis is pessimistic. However, in an actual
schedule, the delay can be reduced by parallelism.

C. MOVE-FORWARD SCHEDULING
In this subsection, we propose a scheduling algorithm to re-
duce the effect of the two factors on end-to-end delays. First,
we schedule packets in the strict order of their priorities.

The classical EDF policy is designed for multitask systems,
where the deadlines of unreleased tasks may be unknown
during algorithm running. Thus, the classical nonpreemptive
EDF policy selects tasks to be scheduled from the currently
released tasks. However, in our model, all the deadlines are
known. Thus, we can schedule packets in the strict order
of their EDF priorities (as shown in Algorithm 4) so that
lower-priority packets do not delay higher-priority packets.
In Algorithm 4, all packets are sorted in decreasing order
of their EDF priorities (line 1). Then, for each packet, the
algorithm checks whether it can start to be scheduled without
conflicting with the other scheduled packets at time t (lines
2–4), where t is from its release time to its deadline. The first
no-conflict time is its injection time, and then, the packet can
be transmitted without blocking (line 5). If there is no time
t that satisfies NoConflict(ska, t), then the packet is moved
to the set Ŝ to await subsequent processing (lines 6–7). The
time complexity of Algorithm 5 is O(|S||H||H|).

Algorithm 4 SPS (Strict priority scheduling)
Input: network < N,W,L >, flow set F
Output: ηka and Ŝ

1: add all packets into a set ~S in increasing order of their
deadlines;

2: for ska = the first packet to the last one in ~S do
3: for t = σka to σka + da do
4: if NoConflict(ska, t) then
5: ηka = t;
6: if there is no t that makes NoConflict(ska, t) true

then
7: Ŝ+ = {ska};
8: return all ηka and Ŝ;

Second, we propose a strategy to improve the parallelism
of packets. Recall that in Algorithm 2 and 4, transmissions
cannot be blocked. Thus, if two packets conflict with each
other, all transmissions of one of them have to be delayed.
This leads to a decrease in parallelism. Closing gates is a
good way to improve parallelism because the transmissions
of a packet can be transmitted discontinuously to use more
resource fragmentation. Therefore, our proposed scheduling
algorithm closes and opens gates based on the following three
properties.

Property 1: If a packet can be transmitted continuously
before its deadline, it can also be transmitted discontinuously
before its deadline.

Discontinuous scheduling is a special case of continuous
scheduling. The resources used by continuous scheduling
can also be used by discontinuous scheduling. Therefore,
in the worst case, discontinuous scheduling is the same as
continuous scheduling.

Property 2: Packet sa, sb ∈ ~S, and a < b. If
Resource(sa) ∩ Resource(sb) 6= ∅, and sa is transmitted
discontinuously, then sa may introduce more delays to the
lower-priority packet sb.

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964690, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

A
B
C
D

time

5048
47

31
15 85 25

(a) Continuous scheduling.

A
B
C
D

discontinuous miss deadline

time

504831
51252 46

(b) Discontinuous scheduling.

FIGURE 8: An illustration of Property 2.

Resource(sa) denotes the network resources required to
transmit packet sa. FIGURE 8 illustrates Property 2. The unit
of the horizontal axis is time, and the letters of the vertical ax-
is correspond to nodes. The red (blue) blocks represent when
the corresponding nodes are used to transmit sa (sb). The
gray blocks represent the resources that have been occupied
by other higher-priority packets. sa has a higher priority than
sb. One-hop transmissions of sa and sb require 8 unit times
and 5 unit times, respectively. The overlap time between
two adjacent hops is 1 unit time. When sa is scheduled
continuously, it has to be injected into the network at time
25 because there is no continue resource at the front. Thus,
sb can use the idle resources between time 3 and 15 (as
shown in FIGURE 8(a)). In this case, the two packets can
be transmitted before their deadlines. However, when sa is
discontinuous, it will occupy the resources between time 1
and 25 (as shown in FIGURE 8(b)). The transmissions of sa
are broken between nodes B and C. Since node D is occupied
by other packets, the last hop of sb has to be transmitted
between time 46 and 51, i.e., sb misses its deadline time 50.
Therefore, discontinuous scheduling may make packets that
are schedulable in other algorithms unschedulable.

Property 3: Packet sa, sb ∈ ~S, and a < b. For packet
sa+1, ..., sb−1, if there exists a subset {s′1, ..., s′j}, and

∀g ∈ [1, j),(Resource(s′g) ∩Resource(s′g+1) 6= ∅)
∧ (Resource(sa) ∩Resource(s′1) 6= ∅)
∧ (Resource(s′j) ∩Resource(sb) 6= ∅),

(25)

then packet sa may delay packet sb.
Based on Property 2, we know that the discontinuous

sa can affect the transmissions of s′1, and then s′1 affects
s′2. Repeat this process, and then s′j affects sb. Thus, the
discontinuous sa will affect sb.

Our proposed algorithm is shown in Algorithm 5. We first
invoke Algorithm 4 SPS() to generate schedules sch[][][]
(lines 1–2), and create a set Ŝ to mark all unscheduled
packets and a set ~S to mark the packets that affect the
unscheduled packets based on Properties 2 and 3 (line 5).
If SPS() can schedule all packets, the following algorithm
does not need to run (lines 3–4). If not, we reschedule the
packets in Ŝ and ~S under the discontinuous scheduling rule
(lines 6–23). There are two reasons why our rescheduling
algorithm can improve schedulability: first, based on Prop-
erty 1, rescheduling a scheduled packet does not make it
unschedulable; second, discontinuous transmissions will use

Algorithm 5 MF (Move-forward scheduling)
Input: network < N,W,L >, flow set F
Output: schedules sch[][][]

1: invoke SPS() to get injection times ηka and an unschedu-
lable packet set Ŝ;

2: for all scheduled packets, create an array sch[a][k][h] to
record the start time of the h-th hop of each packet ska;

3: if Ŝ == ∅ then
4: return sch[][][];
5: ∀sb ∈ Ŝ, all scheduled packets that satisfy Properties 2

and 3 are added into the set S̃;
6: for ska = the first packet to the last one in ~S do
7: if ska ∈ S̃ ∩ Ŝ then
8: t = σka ; h = 1;
9: while t ≤ σka + da do

10: if NoConflict(ska, h, t) then
11: sch[a][k][h] = t;
12: if the h-th hop and (h − 1)-th hop are not

continuous then
13: if the source node of the h-th hop does not

have unused entries then
14: return FAIL;
15: set entries to control the corresponding gate

in the source node of the h-th hop;
16: t is set to the earliest start time of the next hop;
17: if (+ + h) == |Πa| then
18: break;
19: else
20: t+ +;
21: if ska ∈ Ŝ and h 6= |Πa| then
22: return FAIL;
23: return sch[][][];

resource fragmentation at the front and leave more available
resources for unscheduled packets.
NoConflict(ska, h, t) = 1 denotes that the h-th hop of ska

can be scheduled without conflicting with scheduled packets
at time t (line 10). For a packet in Ŝ and ~S, we schedule
its hops separately before its deadline (lines 8–9 and 16–
18). The new schedules are written in the schedule array
sch (line 11). If two successive hops cannot be scheduled
continuously, the entries need to be set to control the cor-
responding gate (lines 12 and 15). However, if there is no
unused entry, the flow set cannot be scheduled (lines 13–14).
Repeat this process to schedule all packets in Ŝ and ~S until a
packet misses its deadline (lines 21–22) or all schedules are
generated and returned (line 23).

This algorithm first invokes SPS() to schedule packets,
and then moves the schedules forward. In the process of
moving, if transmissions are not continuous, schedule en-
tries are spent to block and unblock packets. The schedules
generated by SPS() occupy many network resources. Thus,
even though we allow all packets to move forward, not many
packets can move. Therefore, compared to other scheduling

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964690, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1: parameters

n Number of switches
Q Number of queues
f Number of flows
p Period range
s Packet size range
∆ Number of packets that OMT () solves at one time

algorithms, this algorithm still spends fewer schedule entries.
The number of iterations of the for loop in line 4 and while
loop in line 7 is O(|S|) and O(|H|), respectively. The time
complexity of NoConflict() is O(|H|). Therefore, the time
complexity of Algorithm 5 is O(|S||H||H|).

VI. EVALUATION
In this section, we evaluate our proposed algorithms based
on massive test cases. Three metrics are used for performance
evaluation: (1) schedulable ratio is the percentage of test cas-
es for which an algorithm is able to find a feasible schedule;
(2) the number of schedule entries means that a switch needs
at least these schedule entries to schedule its packets; and
(3) execution time is the time required to generate a feasible
schedule.

We compare our OMT (Algorithm 2), NGC (Algorithm
3), and MF (Algorithm 5) algorithms with three fundamental
methods ORG, EDFT and UP. ORG is the method used in
the current TSN switches, in which gates must be closed
immediately after they finish a transmission. EDFT schedules
each hop based on their EDF priorities. UP is a conservative
upper bound of optimal results. Since, to verify the perfor-
mance of our algorithms, our evaluation results should be
compared with optimal results. However, our problem is NP-
complete, and SMT/OMT solvers cannot solve large-scale
test cases. There is no method to obtain accurate optimal
results. Thus, we have to compare our proposed algorithms
with the conservative upper bound UP. In UP, if test cases
satisfy the following necessary condition, they are considered
schedulable. The necessary condition for schedulability is
that for each port in a switch, its unidirectional utilization
cannot be greater than 100%. Since UP is better than optimal
results, if our results are close to UP, they must be close to
optimal results. Note that UP is a baseline for comparisons
and does not generate schedule tables. OMT is solved by the
Microsoft solver Z3 [36], [37]. All algorithms are written in
C and run on a Windows machine with a 3.4 GHz CPU and
16GB of memory.

Our test cases are generated based on the given param-
eters, which are summarized in TABLE 1. For each test
case, n switches with Q queues are randomly deployed in
a square area. Each switch connects a gateway and three
adjacent switches. f flows randomly select their source nodes
and destination nodes. Periods and packet sizes are random
numbers in the period range p and the packet size range s,
respectively. The deadline of a flow is also a random number
between its transmission delay and its period. We use a mass
of random test cases to verify our algorithms so that their

universality can be demonstrated. Before running algorithms,
to avoid unnecessary computations, we use UP to pre-filter
the unschedulable test cases. If the test cases cannot satisfy
UP, they are discarded. The pre-filtering operation is based
on the necessary condition and does not affect our evaluation
results. ∆ is used to control the execution time of OMT.

In the following evaluation, we first compare all the algo-
rithms, and the comparison is shown in FIGURE 9 of Section
VI-A. To verify the universality of the algorithms, for each
parameter setting, 10000 test cases are generated and solved.
Due to the long execution time of Z3, the scale of test cases
is limited. Therefore, in Section VI-B, we compare the other
algorithms except OMT (Z3) using large-scale test cases. In
Section VI-B, we set the parameters to different values so
that the algorithms can be tested fully. FIGURE 10 shows the
comparisons under varying f and n. FIGURE 11, 12 and 13
show the comparisons under varyingQ, p and s, respectively.
Thus, our proposed Algorithm 2, 3, 4 and 5 are evaluated
completely. Finally, we evaluate Algorithm 1 that assigns
queues in OMT, and show the evaluation results in FIGURE
14.

A. EVALUATIONS WITH Z3
To make test cases solvable by Z3, we set n = 6, Q = 2,
p = [32, 64], s = [100, 400], f ∈ [10, 50] and ∆ ∈ [2, 14].
The average results of 10000 test cases are shown in the
subsequent figures. FIGURE 9 shows the comparison of
schedulable ratios, the number of schedule entries, and the
execution times under varying f and ∆. Since ∆ does not
affect the other algorithms except OMT, our proposed algo-
rithms are not shown in FIGURE 9(b) and (d). In FIGURE
9(a) and (b), the schedulable ratios are normalized, with
UP as the baseline. As f increases, NGC decrease rapidly,
and the others decrease slowly. For NGC, the greater the
number of flows, the greater amount of resources that are
fragmented, and the more conflicts that are introduced to
high-priority packets. Thus, NGC has the worst schedulable
ratio. OMT calls the solver Z3 to minimize the number
of schedule entries. In each call, an attempt is made to
satisfy the schedulability, while OMT cannot optimize the
schedulability between multiple calls. Thus, our proposed
MF algorithm has higher schedulable ratios than those of
OMT. EDFT provides a flexible strategy to schedule flows.
However, it still cannot avoid the conflicts introduced by
lower-priority packets. Thus, it is better than NGC but worse
than the other algorithms. In FIGURE 9(b), as ∆ increases,
the schedulable ratio of OMT almost does not change. This
is because the setting of test cases does not change.

FIGURE 9(c) and (d) show a comparison of the number of
schedule entries. As f increases, the other algorithms except
NGC increase. NGC is allowed to use only one schedule
entry. If one entry is not enough to schedule all flows, NGC
cannot generate schedules. For the same network settings, the
greater the number of flows, the greater the number of entries
that are needed to isolate packets. Hence, the other algorithms
exhibit an increase. ORG closes the corresponding gates

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964690, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50

sc
h

ed
u

la
b

le
 r

at
io

f

OMT NGC
MF EDFT
UP

(a) schedulable ratio, 10 ≤ f ≤
50.

0

0.2

0.4

0.6

0.8

1

1.2

2 5 8 11 14

sc
h

ed
u

la
b

le
 r

at
io

∆

OMT UP

(b) schedulable ratio, 2 ≤ ∆ ≤ 14.

1

10

100

1000

10 20 30 40 50n
u

m
. o

f
sc

h
ed

u
le

 e
n

tr
ie

s

f

OMT NGC
MF ORG
EDFT

(c) num. of entries, 10 ≤ f ≤ 50.

1

10

100

2 5 8 11 14n
u

m
. o

f
sc

h
ed

u
le

 e
n

tr
ie

s

∆

OMT ORG

(d) num. of entries, 2 ≤ ∆ ≤ 14.

(e) execution time, 10 ≤ f ≤ 50. (f) execution time, 2 ≤ ∆ ≤ 14.

FIGURE 9: Comparison with Z3.

after finishing transmissions, while only when transmissions
need to be blocked do the other algorithms close gates.
Therefore, ORG consumes the most entries. In EDFT, if two
transmissions are continuous, no schedule entry is needed.
Thus, EDFT requires fewer schedule entries than ORG. The
objective of OMT is to minimize the number of required
schedule entries. Hence, it requires the least number of sched-
ule entries. Although our proposed MF algorithm requires
more entries than does OMT, MF has the higher schedulable
ratio and a shorter execution time. For all the test cases in this
subsection, MF can finish within 1 ms, while the execution
time of OMT is approximately a few minutes. As the number
of flows increases, the execution time of OMT increases
linearly (as shown in FIGURE 9(e)). Based on this trend,
OMT will require less than two days to solve a test case with
10000 flows and 40000 packets. However, for the original
SMT specification shown in Section IV-A, it is impossible to
obtain the result of any large-scale test case. We tried to solve
a test case with 100 flows based on the SMT specification but
did not obtain the result within two days. Therefore, when a
flow set needs to be scheduled, MF is used first because it is
fast and efficient. Then, if MF requires more schedule entries

than those supported by network devices, OMT can be used
to find a more optimized solution.

B. EVALUATIONS WITHOUT Z3
To fully evaluate our proposed algorithms, we vary every
parameter to compare the results. The basic settings are
n = 20, Q = 4, f = 6000, p = [4096, 32768], and
s = [100, 1500]. In the following evaluation, if these parame-
ters are not specified, the basic settings are used. In FIGURE
10, the parameters f and n are changed. FIGURE 10(a) and
(b) show schedulable ratios that are normalized with UP as
the baseline. NGC is still the worst one. When f > 3000,
NGC cannot schedule any test case. Thus, in the following
comparisons, only FIGURE 10(e) shows three points cor-
responding to NGC. As f increases, the schedulable ratios
decrease. This is because the greater the number of flows,
the more difficult the scheduling becomes. MF can avoid
priority inversion, while in EDFT, priority inversions still
occurs between transmissions. Thus, MF is better than EDFT.
As shown in FIGURE 10(b), the schedulable ratios increase
as n increases because the greater the number of switches,
the fewer the number of conflicts that occur.

0

0.2

0.4

0.6

0.8

1

1.2

1000 4000 7000 10000

sc
h

ed
u

la
b

le
 r

at
io

f

NGC MF

EDFT UP

(a) schedulable ratio under varying
f .

0.6

0.7

0.8

0.9

1

1.1

8 11 14 17 20
sc

h
ed

u
la

b
le

 r
at

io

n

MF EDFT
UP

(b) schedulable ratio under varying
n.

0

7000

14000

21000

28000

1000 4000 7000 10000n
u

m
. o

f
sc

h
ed

u
le

 e
n

tr
ie

s

f

MF ORG
EDFT

1077

8000

20489

(c) num. of entries under varying f .

0

5000

10000

15000

20000

25000

8 11 14 17 20n
u

m
. o

f
sc

h
ed

u
le

 e
n

tr
ie

s

n

MF ORG

EDFT

(d) num. of entries under varying n.

0.001

0.01

0.1

1

10

100

1000 4000 7000 10000ex
ec

u
ti

o
n

 t
im

e
(m

in
u

te
)

f

NGC

MF

EDFT

(e) execution time under varying f .

0.01

0.1

1

10

100

8 11 14 17 20ex
ec

u
ti

o
n

 t
im

e
(m

in
u

te
)

n

MF EDFT

(f) execution time under varying n.

FIGURE 10: Comparison without Z3.

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964690, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 10(c) and (d) show the number of required sched-
ule entries. Since the flow set that is difficult to schedule
requires more schedule entries, the trend of the lines in the
two figures is opposite to that in FIGURE 10(a) and (b).
There are approximately 40000 packets in a test case with
10000 flows. ORG has to spend many schedule entries to
provide complete isolation for these packets. Our proposed
MF algorithm requires the fewest schedule entries because
the strict priority scheduling requires only one entry in each
switch, and the selection of moving packets limits the num-
ber of operations on gates. Compared to ORG, in the best
case, MF requires only one-twentieth the schedule entries to
schedule the same flow set.

The related work in [29] considers the number of schedule
entries in its problem model. However, the work uses only 64
entries to schedule small networks. Due to the unacceptable
execution time of SMT solvers, the work cannot use more
entries. Although, from the evaluation shown in [29], we can
deduce that maybe a switch with 1024 entries can schedule
more than 1024 flows, we do not know the exact number of
flows and cannot compare it with our results. The datasheet
[14] of the NXP switch chip mentions that the chip with 1024
entries can support 1024 deterministic flows. The datasheet
does not explain why the number of deterministic flows is
1024. However, this is the only exact number we found.
Therefore, we compare it with our results. In our algorithms,
as shown in FIGURE 10(c), the switch with 1024 entries
can deterministically schedule approximately 8000 flows,
which include more than 30000 packets. Thus, our proposed
algorithm offers approximately 8 times more schedulability
than does the suggestion in the datasheet [14].

FIGURE 10(e) and (f) show the execution time. MF is
based on fixed priorities and does not need to find the highest
priority packet for each schedule. However, EDFT not only
needs to find the highest-priority one at every scheduling time
but also finishes only one transmission after each discovery.
This is the reason why MF can finish within 1 minute, while
EDFT spends up to 1 hour. As f increases, the execution time
spent to search the solution spaces increases. As n increases,
the execution time slightly fluctuates. The reason is that the
scheduling algorithms traverse flows rather than switches.

FIGURE 11 shows the comparison a varying number of
queues. To make the difference obvious, we set n = 8. As
Q increases, the schedulable ratios slightly increase. This
is because having more queues helps to eliminate some
of the queue conflicts, though the link conflicts still exist.
Comparing FIGURE 10(b) and FIGURE 11(a), we find that
link conflicts have more impact on schedulable ratios than
do queue conflicts. The greater the number of queues, the
more entries are needed to control gates. Thus, the number of
schedule entries also increases as Q increases.

FIGURE 12 shows the comparison under different p. All
the results are solved by our MF algorithm. When the range
of periods decreases, the high real-time packets are eliminat-
ed. Thus, the test cases are easy to schedule. FIGURE 13
shows the comparison under different packet sizes. When the

0.6

0.7

0.8

0.9

1

1.1

2 4 6 8

sc
h

ed
u

la
b

le
 r

at
io

Q

MF EDFT
UP

(a) schedulable ratio.

0

5000

10000

15000

20000

25000

2 4 6 8n
u

m
. o

f
sc

h
ed

u
le

 e
n

tr
ie

s

Q

MF ORG

EDFT

(b) number of schedule entries.

FIGURE 11: Comparison under n = 8 and varying Q.

range of packet sizes becomes narrow, there are no small
packets to make use of resource fragmentation. Therefore,
the schedulable ratio reduces, and the number of schedule
entries increases.

0.6

0.7

0.8

0.9

1

1.1

1000 4000 7000 10000

sc
h

ed
u

la
b

le
 r

at
io

f

p=[4096,32768]

p=[8192,16384]

(a) schedulable ratio.

0

1000

2000

3000

4000

5000

6000

7000

1000 4000 7000 10000n
u

m
. o

f
sc

h
ed

u
le

 e
n

tr
ie

s

f

p=[4096,32768]

p=[8192,16384]

(b) number of schedule entries.

FIGURE 12: Comparison under varying p.

0.6

0.7

0.8

0.9

1

1.1

1000 4000 7000 10000

sc
h

ed
u

la
b

le
 r

at
io

f

s=[100,1500]

s=[700,1000]

(a) schedulable ratio.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1000 4000 7000 10000n
u

m
. o

f
sc

h
ed

u
le

 e
n

tr
ie

s

f

s=[100,1500]

s=[700,1000]

(b) number of schedule entries.

FIGURE 13: Comparison under varying s.

FIGURE 14 shows the comparison between our pro-
posed queue assignment algorithm (QA) and a method (PR)
currently used. In current applications, high-priority flows
are assigned to high-priority queues. In the compared PR
method, flows are evenly assigned to queues based on their
priorities. This method does not consider the workload as-
signed to a switch. If a switch has a greater workload, it needs
more entries to isolate flows. Therefore, the methods with
PR have lower schedulable ratios and spend more schedule
entries than those with our proposed QA method.

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964690, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

0.6

0.7

0.8

0.9

1

4000 6000 8000 10000

sc
h

ed
u

la
b

le
 r

at
io

f

EDFT-QA

MF-PR

EDFT-PR

MF-QA

(a) schedulable ratio.

0

5000

10000

15000

20000

25000

1000 4000 7000 10000n
u

m
. o

f
sc

h
ed

u
le

 e
n

tr
ie

s
f

EDFT-QA

MF-PR

EDFT-PR

MF-QA

(b) number of schedule entries.

FIGURE 14: Comparison of queue assignment algorithms.

VII. DISCUSSION
For scheduling problems of TSNs, there is no benchmark.
Thus, we have to vary all the parameters related to networks
and flows to generate extensive test cases such that our
evaluations can cover as many situations as possible. From
the evaluation results, we can conclude that our proposed
algorithms OMT and MF are better than the others. This
is because our algorithms use the following two strategies
to reconcile the contradiction between the limited number
of schedule entries and massive data. The first one is to
control the injection times of packets to reduce conflicts.
The second one is to use one schedule entry to isolate as
many packets as possible. These are also the reasons why our
proposed algorithms can tackle the two challenges mentioned
in Section I.

Our algorithms are based on software and can be applied
to all of the networks following the standard IEEE 802.1Qbv.
For example, our algorithms can be used in a 5G system to
solve practical issues, since TSNs are defined as the fronthaul
networks of 5G systems in the IEEE standard 802.1CM,
and transmitting massive data is one of the three use cases
supported by 5G. Even if in the future a switch chip may
include a large schedule table, our algorithms can still break
through the limitation of the chips and make a switch support
more communications.

In industrial applications, almost all communications are
fixed and known, while bursty communications still exist,
such as emergency alarms. Our algorithms are designed to
handle known communications. When a bursty packet needs
to be transmitted, schedule tables have to be reconfigured.
This reconfiguration process will introduce a long delay that
may reduce the real-time performance of industrial networks.
Therefore, in the future, we will propose distributed schedul-
ing algorithms to handle bursty communications.

VIII. CONCLUSION
TSNs, as the backbone network of industrial internet of
things, have to schedule massive real-time data packets.
However, the off-the-shelf TSN switches only contain limited
schedule entries. This causes that they cannot support mas-
sive real-time packets. Therefore, in this paper, we propose
the algorithms that can schedule massive real-time data with
a limited number of schedule entries. First, to find the optimal

results of the NP-complete problem, we formulate it as an
SMT specification. The SMT/OMT solver Z3 can find op-
timal solutions for SMT specifications. However, due to the
complexity of the problem, Z3 cannot even find any feasible
results for a small test case in two days. Hence, we divide
the SMT specification into multiple OMT specifications and
still use Z3 to solve them. The evaluation results indicate
that the execution time of OMT increases linearly as the
number of flow increases. In two days, using the OMT-based
algorithm, we can obtain feasible solutions for test cases with
10000 flows. Second, to obtain solutions quickly, we propose
heuristic algorithms. Based on an initial algorithm NGC, we
find two factors that make flows difficult to schedule. Then,
we propose the MF algorithm to reduce the impact of the
two factors on the schedulability. Compared with existing
heuristic algorithms, our proposed MF algorithm requires
only at least one-twentieth the number of schedule tables
to schedule the same number of packets. Therefore, if users
want to obtain feasible solutions quickly, MF is a good
choice; if the usage of entries is the most important, the OMT-
based algorithm can be used.

.

APPENDIX A SYMBOL
The following symbols are used in this paper.

N Node set
W Switch set
L Link set
ni The i-th node
ni,j The j-th port of ni

li,g The link between ni and ng

T Number of entries
F Flow set
fa The a-th flow
pa Period of fa
da Relative deadline
qa Queue ID of fa
γa End-to-end delay of fa
γ+a Transmission delay of fa
Πa Path of fa
πa,b The b-th node in Πa

H Hyperperiod
Ei Schedule table in ni

ei,y The y-th entry in Ei

ti,y The time at which ei,y starts to run
vi,y,j If ei,y is available to Port j
ci,y,r If the gate of the r-th queue is opened
V Number of ports in a switch
Q Number of queues in an egress port
ska The b-th packet of fa
τka,b The b-th hop of ska
αk
a,b Starting time of τka,b
βk
a,b Ending time of τka,b
∆ Number of packets in a OMT subproblem
ρa Utilization of na

ρ̂t,i,j,g Utilization of the g-th queue in ni,j at time t
S, S′, S̃ Temporary packet sets
Su Packet set in OMT subproblems
Ŝ Unschedulable packet set
~S Sorted packet set
sa The a-th packet in a packet set
ē Maximum number of available entries
λi,y Whether ei,y is available

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964690, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

ηka Injection time of ska
σk
a Release time of ska

[µ1a,g , µ2a,g] Conflict interval
sch[][][] Schedules

n Number of switches
f Number of flows
p Period range
s Packet size range

REFERENCES
[1] D. Serpanos and M. Wolf, “Industrial internet of things,” in Internet-of-

Things (IoT) Systems. Springer, 2018, pp. 37–54.
[2] B. Chen, J. Wan, A. Celesti, D. Li, H. Abbas, and Q. Zhang, “Edge com-

puting in IoT-based manufacturing,” IEEE Communications Magazine,
vol. 56, no. 9, pp. 103–109, 2018.

[3] Z. Wu, Z. Meng, and J. Gray, “IoT-based techniques for online M2M-
interactive itemized data registration and offline information traceability
in a digital manufacturing system,” IEEE Transactions on Industrial Infor-
matics, vol. 13, no. 5, pp. 2397–2405, 2017.

[4] W. Liang, M. Zheng, J. Zhang, H. Shi, H. Yu, Y. Yang, S. Liu, W. Yang,
and X. Zhao, “WIA-FA and its applications to digital factory: A wireless
network solution for factory automation,” Proceedings of the IEEE, pp.
1–21, 2019.

[5] X. Jin, N. Guan, C. Xia, J. Wang, and P. Zeng, “Packet aggregation
real-time scheduling for large-scale WIA-PA industrial wireless sensor
networks,” ACM Transactions on Embedded Computing Systems, vol. 17,
no. 5, pp. 88:1–88:19, 2018.

[6] Y. Wei, Q. Leng, S. Han, A. K. Mok, W. Zhang, and M. Tomizuka, “RT-
WiFi: Real-time high-speed communication protocol for wireless cyber-
physical control applications,” in 2013 IEEE 34th Real-Time Systems
Symposium (RTSS), 2013, pp. 140–149.

[7] Z. Pang, M. Luvisotto, and D. Dzung, “Wireless high-performance com-
munications: The challenges and opportunities of a new target,” IEEE
Industrial Electronics Magazine, vol. 11, no. 3, pp. 20–25, 2017.

[8] X. Jin, F. Kong, L. Kong, W. Liu, and P. Zeng, “Reliability and temporality
optimization for multiple coexisting WirelessHART networks in industrial
environments,” IEEE Transactions on Industrial Electronics, vol. 64, no. 8,
pp. 6591–6602, 2017.

[9] L. Zhao, P. Pop, Q. Li, J. Chen, and H. Xiong, “Timing analysis of
rate-constrained traffic in TTEthernet using network calculus,” Real-Time
Systems, vol. 53, no. 2, pp. 254–287, 2017.

[10] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury, “Ultra-low latency (ULL) networks: The
IEEE TSN and IETF DetNet standards and related 5G ULL research,”
IEEE Communications Surveys Tutorials, vol. 21, no. 1, pp. 88–145, 2019.

[11] H. Zhang, N. Liu, X. Chu, K. Long, A. Aghvami, and V. C. M. Leung,
“Network slicing based 5G and future mobile networks: Mobility, resource
management, and challenges,” IEEE Communications Magazine, vol. 55,
no. 8, pp. 138–145, 2017.

[12] Cisco. (2018) About Time-Sensitive Networking. [Online]. Available:
https://www.cisco.com/c/en/us/td/docs/switches/lan/cisco_ie4000/tsn/b_t
sn_ios_support/b_tsn_ios_support_chapter_01.pdf.

[13] Innovasic Inc. (2016) TSN evaluation k-
it quick start guide. [Online]. Available:
https://www.analog.com/media/en/technical-documentation/user-guides/
tsn-evaluation-kit-quickstart-guide.pdf

[14] NXP Semiconductors. (2016) SJA1105 5-port au-
tomotive ethernet switch. [Online]. Available:
https://www.nxp.com/docs/en/data-sheet/SJA1105.pdf

[15] E. B. Clark, T. A. Henzinger, H. Veith, R. Bloem, “Satisfiability modulo
theories”, Handbook of Model Checking. Springer, Cham, pp. 305-343,
2018.

[16] A. Cimatti, A. Franzen, A. Griggio, R. Sebastiani, C. Stenico, “Satisfiabili-
ty modulo the theory of costs: foundations and applications”, International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pp. 99-113, 2010.

[17] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Computing Surveys, vol. 43, no. 4, pp.
35:1–35:44, 2011.

[18] J. Liu, Real-time Systems. Prentice Hall, 2000.
[19] A. Sgora, D. J. Vergados, and D. D. Vergados, “A survey of TDMA

scheduling schemes in wireless multihop networks,” ACM Computing
Surveys, vol. 47, no. 3, pp. 53:1–53:39, 2015.

[20] P. Park, S. Coleri Ergen, C. Fischione, C. Lu, and K. H. Johansson, “Wire-
less network design for control systems: A survey,” IEEE Communications
Surveys Tutorials, vol. 20, no. 2, pp. 978–1013, 2018.

[21] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner, “Scheduling
real-time communication in IEEE 802.1Qbv time sensitive networks,” in
Proceedings of the 24th International Conference on Real-Time Networks
and Systems (RTNS). ACM, pp. 183–192, 2016.

[22] N. G. Nayak, F. Dürr, and K. Rothermel, “Incremental flow scheduling and
routing in time-sensitive software-defined networks,” IEEE Transactions
on Industrial Informatics, vol. 14, no. 5, pp. 2066–2075, 2018.

[23] J. Falk, F. DÃijrr, and K. Rothermel, “Exploring practical limitations of
joint routing and scheduling for TSN with ILP,” in 2018 IEEE 24th In-
ternational Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), pp. 136–146, 2018.

[24] P. Pop, M. L. Raagaard, S. S. Craciunas, and W. Steiner, “Design opti-
misation of cyber-physical distributed systems using IEEE time-sensitive
networks,” IET Cyber-Physical Systems: Theory Applications, vol. 1,
no. 1, pp. 86–94, 2016.

[25] V. Gavrilut, L. Zhao, M. L. Raagaard, and P. Pop, “AVB-aware routing
and scheduling of time-triggered traffic for TSN,” IEEE Access, vol. 6, pp.
75 229–75 243, 2018.

[26] M. Pahlevan and R. Obermaisser, “Genetic algorithm for scheduling time-
triggered traffic in time-sensitive networks,” in 2018 IEEE 23rd Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA), 2018, pp. 337–344.

[27] M. L. Raagaard, P. Pop, M. GutiÃl’rrez, and W. Steiner, “Runtime
reconfiguration of time-sensitive networking (TSN) schedules for fog
computing,” in 2017 IEEE Fog World Congress (FWC), 2017, pp. 1–6.

[28] P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner, “Enabling fog
computing for industrial automation through time-sensitive networking
(TSN),” IEEE Communications Standards Magazine, vol. 2, no. 2, pp. 55–
61, 2018.

[29] R. S. Oliver, S. S. Craciunas, and W. Steiner, “IEEE 802.1Qbv gate control
list synthesis using array theory encoding,” in 2018 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2018, pp.
13–24.

[30] F. Dürr and N. G. Nayak, “No-wait packet scheduling for IEEE time-
sensitive networks (TSN),” in Proceedings of the 24th International Con-
ference on Real-Time Networks and Systems (RTNS). ACM, 2016, pp.
203–212.

[31] F. Xiao, M. Aritsugi, “An adaptive parallel processing strategy for complex
event processing systems over data streams in wireless sensor networks,”
Sensors, vol. 18, pp. 1–15, 2018.

[32] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and G. Müh-
l, “ILP-based joint routing and scheduling for time-triggered networks,” in
Proceedings of the 25th International Conference on Real-Time Networks
and Systems (RTNS), 2017, pp. 8–17.

[33] K. Gopalan, T. Chiueh, and Y. Lin, “Load balancing routing with
bandwidth-delay guarantees,” IEEE Communications Magazine, vol. 42,
no. 6, pp. 108–113, 2004.

[34] Telecommunications Industry Association, “ANSI/TIA/EIA-568-B.2-
2001, Commercial Building Telecommunications Cabling Standard",
2001.

[35] NXP Semiconductors. (2018) Open indus-
trial Linux user guide. [Online]. Available:
https://www.openil.org/news/files/OpenIL_User_Guide_Rev1.2.pdf

[36] L. Moura, N. Bjorner, “Z3: An efficient SMT solver”, in Proceedings
of the 14th International Conference in Tools and Algorithms for the
Construction and Analysis of Systems, 2008.

[37] N. Bjorner and A.-D. Phan, “vZ - maximal satisfaction with Z3,” in
Proceedings of the 6th international symposium on symbolic Computation
in software science (SCSS), 2014, pp. 1–9.

16 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964690, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

X. JIN received her Ph.D. degree in computer
science from Northeastern University, China, in
2013. She is currently an Associate Professor with
the Shenyang Institute of Automation, Chinese A-
cademy of Sciences. She is also a committee mem-
ber of the China Computer Federation Technical
Committee on Embedded Systems (CCF TCEBS).
Her research interests include industrial networks,
real-time systems, and internet of things.

C. XIA received his Ph.D. degree from Northeast-
ern University, China, in 2015. He is currently
an assistant professor at the Shenyang Institute of
Automation, Chinese Academy of Sciences. His
research interests include wireless sensor network-
s and real-time systems, especially the real-time
scheduling algorithms, and smart energy systems.

N. GUAN is currently an assistant professor at
the Department of Computing, The Hong Kong
Polytechnic University. He received his BE and
MS from Northeastern University, China in 2003
and 2006 respectively, and a PhD from Uppsala
University, Sweden in 2013. His research interests
include real-time embedded systems and cyber-
physical systems. He received the EDAA Out-
standing Dissertation Award in 2014, the Best
Paper Award of RTSS 2009 and DATE 2013.

C. XU received the Ph.D. degree from University
of Chinese Academy of Sciences, China, in 2017.
He has been with Shenyang Institute of Automa-
tion, Chinese Academy of Sciences, China, since
2013, where he currently is doing the postdoctoral
research and serving as an assistant professor.
He is a voting member of IEEE 1918.1 Working
Group for Tactile Internet as well as a member
of IEEE 1918.1.1 Task Group for Haptic Codec.
He is also a member of IEEE 1932.1 Working

Group for Licensed/Unlicensed Spectrum Interoperability in Wireless Mo-
bile Networks. He serves as a 3GPP standardization delegate in the Technical
Specification Group (TSG) for Radio Access Network (RAN). His research
interests include cognitive radio networks, industrial wireless networks,
tactile internet and 5G URLLC.

D. LI received his Ph.D. degree in mechatronic
engineering at Shenyang Institute of Automation,
Chinese Academy of Sciences. He is currently
involved in research on industrial networks and
software defined networking for intelligent man-
ufacturing.

Y. YIN received his master degree in Technical
Economy and Management from Business School
of Liaoning University, in 2013. He is currently
pursuing his Ph.D. degree in Technical Economics
at School of Economics Liaoning University. His
research interests include network management,
and optimization algorithms.

P. ZENG received his Ph.D. degree from the
Shenyang Institute of Automation, Chinese A-
cademy of Sciences. He is currently a professor at
the Shenyang Institute of Automation, Chinese A-
cademy of Sciences. His research interests include
industrial communication and wireless sensor net-
works.

VOLUME 4, 2016 17

