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Abstract—Wireless sensor-actuator networks enable an effi-
cient and cost-effective approach for industrial sensing and
control applications. To satisfy the real-time requirement of
such applications, these networks adopt centralized scheduling
algorithms to optimize the real-time performance based on global
information. Existing centralized algorithms mostly focus on
scheduling time-triggered flows. They cannot effectively schedule
event-triggered flows due to the dynamics and unpredictability of
events. In this paper, we propose three fundamental centralized
algorithms that reserve as few resources as possible for event-
triggered flows such that the real-time performance of time-
triggered flows is not affected. We then analyze their advantages
and disadvantages. Based on the analysis, we combine their
advantages, including those in terms of their resource require-
ments, into a centralized algorithm. Finally, we conduct extensive
simulations based on both real topologies and random topologies.
The simulations indicate that for most test cases the schedulability
of our combined algorithm is close to optimal solutions.

I. INTRODUCTION

Wireless sensor-actuator networks (WSANs) enable an ef-
ficient and cost-effective approach for industrial sensing and
control applications. A large class of industrial control appli-
cations impose real-time requirements between sensing and
actuation. For example, in the cement production process,
the temperature data of rotary kilns must be delivered to the
control room before their deadlines. If a data packet with a
high-temperature warning misses its deadline, timely control of
temperature fails which may cause kiln explosion. Specifically,
excessive or unbounded latency may lead to highly unstable
systems, making real-time performance a critical requirement
in industrial WSANs.

Since Time Division Multiple Access (TDMA)-based ap-
proaches can provide predictable latency, they are preferred
over CSMA/CA-based ones for transmission scheduling in
industrial WSANs [1]. TDMA-based approaches are usually
adopted through a centralized algorithm that can exploit the
global information and may optimize the real-time perfor-
mance. Currently, most WSANs with stringent real-time re-
quirements adopt centralized approaches [2].

Industrial WSANs may employ both time-triggered flows
and event-triggered flows such as the flows involving periodic
sensing data and sporadic emergency alarms. For a time-
triggered flow, its packets are generated and sent periodically
with a fixed period. Hence, from the release time of the first
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packet, all subsequent packets’ release times can be known.
Based on this, flow paths, and network topologies, centralized
algorithms generate schedules that are disseminated to each
node before the system starts. On the other hand, for event-
triggered flows, the occurrence of events is unpredictable.
Centralized algorithms have difficulty in generating schedules
for these dynamic event-triggered packets. In real industrial
systems, when an event occurs on a node, the node first sends
a message to the network manager which then regenerates
the schedule considering this new flow and redisseminates
[3]. This approach introduces a long latency, affecting the
real-time performance of event-triggered packets. State-of-the-
art approaches do not assign dedicated time slots to event-
triggered packets; instead they allow them to preempt the
time slots assigned to time-triggered packets [4], [5]. While
this method may satisfy the requirements of event-triggered
packets, it may cause some important time-triggered packets
miss their deadlines.

In this paper, we propose centralized algorithms to schedule
all time- and event-triggered flows under real-time constraints.
These algorithms reserve time slots for event-triggered flows
such that the reserved time slots are sufficient to handle
event-triggered flows, and the real-time performance of time-
triggered packets is not affected. This approach thus avoids
introducing long latency as well as the preemption of time-
triggered packets. First, we propose three fundamental schedul-
ing approaches: (1) a virtual-period method (VP), which
changes event-triggered flows to virtual time-triggered flows
such that scheduling algorithms for time-triggered flows can be
used; (2) a slot-multiplexed method (SM), which is an optimal
algorithm when the objective is to minimize the number of
reserved time slots for event-triggered flows; (3) a reverse-
scheduling method (RS), which not only decreases the number
of reserved time slots, but also reduces the workload of
network nodes. Second, we analyze the advantages and disad-
vantages of the three methods, and combine their advantages
to propose an algorithm that reserves as few resources as
possible and makes the schedules easy to disseminate. Finally,
we evaluate our algorithms based on the topologies of a phys-
ical WSAN testbed and random topologies. The simulations
indicate that when the node workload is less than 90% of the
maximum workload, regardless of what the network workload
is, the difference of schedulable ratios between our combined
algorithm and optimal solutions remains less than 30%.

In the rest of the paper, Section II reviews related work.
Section III presents our system model and problem. Section
IV introduces the three fundamental algorithms. Section V
compares their performances, and Section VI proposes an



algorithm combining their advantages. Section VII presents
our simulation results. Section VIII concludes the paper.

II. RELATED WORK

Real-time scheduling for WSANs has been widely studied
[6]. The work in [7] proves that the scheduling problem
of WSANs is NP-hard, and then derives a strong necessary
condition for schedulability. After that, to improve the real-
time performance of WSANs, many centralized scheduling
algorithms are proposed, such as assigning fixed priorities
[8], [9], assigning segmented slots [10], eliminating bottle-
neck [11], and addressing spatial re-use [12]. However, these
centralized algorithms assign communication resources only to
time-triggered packets. If these algorithms are used to handle
event-triggered packets that are released at every time slot, a
large number of resource reservations must lead to extremely
low schedulability.

To handle event-triggered packets, some existing approaches
allow to preempt the resource of time-triggered packets [4] or
assign time slots that are shared by both types of packets [13].
In such approaches, time-triggered packets may be dropped
or miss deadlines. In the approach proposed in [5], before
event-triggered packets are transmitted, all nodes switch to an
emergency state, and stop transmitting time-triggered packets.
Scheduling and routing proposed in [14], [15] aims to reduce
the preemption of time-triggered packets by event-triggered
packets. In contrast, we propose real-time scheduling algo-
rithms that do not allow event-triggered packets to preempt
time-triggered packets and reserve as few time slots as possible
for event-triggered packets such that the real-time requirements
of all packets can be guaranteed.

III. PROBLEM STATEMENT

A WSAN is characterized by a two-tuple < N,L >. The
node set N includes a gateway n0 and sensor/actuator devices
ni. The gateway connects with an access point, and each
sensor/actuator device is equipped with a single half-duplex
transceiver. Therefore, a node cannot receive and send simulta-
neously. The network manager software, including scheduling,
routing and maintenance algorithms, is implemented in the
gateway. The link set L denotes the network topology. If nodes
ni and nj can directly communicate with each other, then the
link li,j in set L is equal to 1; otherwise, li,j = 0.

The flow set is denoted by F = {fe1 , fe2 , ..., f t1, f t2, ...}. Each
time-triggered flow f ti ∈ F t, where F t ⊆ F , generates a
packet periodically with a period pti, and its relative deadline
is implicit, i.e., equal to its period pti. The periods of time-
triggered flows are harmonic, i.e., pti = p′ × 2x, where x is
an integer, and p′ is the unit period that contains a certain
number of time slots. For a time- and event-triggered hybrid
network, the period of the schedules is not less than the
least common multiple of the periods of time-triggered flows.
Harmonic periods are widely used in industrial WSANs [3]
and real-time embedded systems [16] as the hyper-period (least
common multiple) remains small that simplifies scheduling.
We assume that at time slot 0 all of the time-triggered flows
release their first packets. Then, time-triggered flow f ti releases
its j-th packet at time slot j × pti, and its absolute deadline is

(j + 1) × pti. Event-triggered flow fei ∈ F e, where F e ⊆ F ,
is aperiodic. An event-triggered packet can be released at
any time t but must be delivered to its destination within its
absolute deadline t+ dei . The time interval [t, t+ dei ] is called
its active interval. We assume that when flow fei releases a
packet, it does not release another before its deadline. If an
event-triggered flow has to release multiple packets, it can
be regarded as multiple flows, and each of them releases
one packet. The routing path π∗i (∗ is a wild-card character,
representing e and t) of flow f∗i is from a sensor sn∗i via
the gateway n0 to an actuator dn∗i , and contains c∗i hops.
Since routing is already well-studied [17], we do not propose
any routing algorithm and consider that the routes are already
generated based on some existing algorithms [18].

WSANs support 16 non-overlapping channels defined in the
IEEE 802.15.4 standard some of which may remain unavail-
able due to external interference. We use m (1 ≤ m ≤ 16)
to denote the number of available channels. The scheduling
algorithm is based on the time slotted channel hopping (TSCH)
MAC protocol [19]. TSCH has two dimensions: time slots
(TS) and channels (CH) as shown in Fig. 1(b). All nodes are
time synchronized, and can access all channels. Scheduling al-
gorithms assign a time slot and a channel to each transmission.
A transmission τ∗i,j denotes the j-th hop of a packet of flow f∗i .
Nodes change their working modes, Transmit (Tx) or Receive
(Rx), based on assignment information. Two transmissions
that involve a common node cannot be scheduled at the same
time slot. This situation is called node conflict.

4

2

0
3

1

5

6
7

f1

f3

f2

(a) Three flows

3:7-0
2:1-3

2:3-4 3:0-4 2:4-0 2:0-5
1:2-4

1:4-0
1:0-6

TS0 TS1 TS2 TS3 TS4 TS5
CH1
CH2

3:7-0
2:1-31:2-4
1:4-0

TS6 TS7
superframe

...

repeat

(b) Superframe

Working modes of Node 4, w4=5

2:Rx 3:Rx 2:Tx
1:Rx

1:Tx
TS0 TS1 TS2 TS3 TS4 TS5

CH1

CH2

3:Rx 3:Tx 2:Rx 2:Tx1:Rx
1:Tx

Working modes of Node 0, w0=6

TS0 TS1 TS2 TS3 TS4 TS5

(c) Disseminated working-mode tables
Fig. 1. An example of a traditional time-triggered schedule

Assignment information is organized into superframes. If
all flows are time-triggered, the length of a superframe is
equal to the least common multiple of their periods. The
network manager disseminates the working modes of one
superframe to each node. Thus, nodes store their own working-
mode information in local memory and change their modes
accordingly, and then, the network runs continuously. Fig. 1
shows an example. When the three time-triggered flows have
the same period 6, the superframe length is 6. At time slot
TS1 and on channel CH1, the second hop of f1 is sent from
n4 to n0; hence, n4 and n0 are in Tx mode and Rx mode,
respectively. In Fig. 1(c), the working-mode tables of n4 and
n0 are shown. We use wi to denote the number of working-
mode entries of node ni in one superframe, and w4 = 5,
w0 = 6. Since the nodes are memory-constrained, the number
of working-mode entries is restricted. The upper bound of wi is



W . Since event-triggered flows are not periodic, the traditional
superframe is not suitable for a time- and event-triggered
hybrid network. In Sections IV and V, we will discuss how to
reserve time slots for event-triggered flows.

Our objective is to schedule the transmissions so as to meet
the following three constraints.
• Real-time constraint: All of the time-triggered packets

and event-triggered packets have to be delivered to des-
tinations before their deadlines.

• Node-conflict constraint: A node can serve (i.e., transmit
or receive) at most one transmission at a time slot.

• Resource constraint: For each node, the number of
working-mode entries is not greater than W .

A set of flows is called schedulable, if it has a feasible
schedule that meets all the above constraints. A scheduling
algorithm is optimal, if it can find a feasible schedule whenever
there exists one. Note that the scheduling problem studied in
[7] has F e = ∅ and hence is a special case of our problem.
Since the problem in [7] is NP-hard, our problem is also
NP-hard. Therefore, we will design highly efficient heuristic
algorithms. Our algorithms aim to guarantee the real-time
performance and reliability of all flows. Although the reserved
time slots for event-triggered flows are not used when no event-
triggered flow occurs, the time-triggered flows can still be
scheduled, and the reservations do not consume extra energy.

IV. FUNDAMENTAL METHODS FOR SCHEDULING

Compared to traditional time-triggered networks, the time-
triggered and event-triggered hybrid networks have three new
factors that affect the schedulability: periodicity, time slot
reservation and node reservation for event-triggered flows.
First, if schedules are not periodic, or the period is not
short enough to satisfy the resource constraint, the network
cannot be scheduled even though a feasible solution has been
generated. Second, the more time slots and nodes that are
reserved for event-triggered flows, the harder the scheduling
of time-triggered flows becomes. In this section, we propose
three methods and analyze them in terms of schedule length
and resource requirements.

A. Virtual-Period Method

Although the real-time scheduling for event-triggered flows
is still an open problem, there are many studies on time-
triggered flows. An intuitive scheduling approach for event-
triggered flows is to convert them to virtual time-triggered
flows and then schedule them using the same algorithms
with other time-triggered flows, e.g. RM [16] and C-LLF [7].
The only difference between event-triggered flows and time-
triggered flows is that event-triggered flows are not periodic.
Therefore, we assign virtual periods pei to event-triggered
flows. The calculation of virtual periods is shown in Theorem
1. When an event-triggered packet is released at time slot t, it
waits to be scheduled until the subsequent virtual period starts.
Theorem 1 proves that this virtual period will have an instance
that is released and finishes in the interval [t, t+dei ]. Therefore,
the event-triggered packet will not miss its deadline. Then, we
can obtain the superframe length Hvp = max∀f∗i ∈F {p

∗
i }, as

all periods are harmonic. At each time slot in the superframe,
if an idle channel exists, the transmission that has the highest
priority and does not involve a node that is common with the
scheduled flows in this slot is scheduled on that channel.

Theorem 1. If an event-triggered packet is released at time
slot t, and its absolute deadline is t + dei , then there must

exist a harmonic virtual period pei = p′ × 2
blog2(

dei+1

2p′ )c with
an instance that is fully contained in interval [t, t+ dei ].

Proof. We set the virtual period of flow fei to p′×2x (x ∈ Z).
x should be as large as possible, as in each virtual period, cei
time slots have to be occupied. A packet is released at time
slot t (t ∈ N), and its deadline is t + dei . Thus, our object is
to find the maximum x such that

t ≤ j × (p′ × 2x) < (j + 1)× (p′ × 2x)− 1 ≤ t+ dei ,

where j can be any integer. We know t
p′×2x ≤ j and j ≤

t+dei+1
p′×2x − 1. So, in the range of [ t

p′×2x ,
t+dei+1
p′×2x − 1], there

must be at least one integer. We discuss two cases as follows.
• If 0 ≤ (

t+dei+1
p′×2x − 1) − ( t

p′×2x ) < 1, then log2(
dei+1
2p′ ) <

x ≤ log2(
dei+1
p′ ). The maximum x is blog2(

dei+1
p′ )c. In

this case, there are many values of t, dei and p′ that make
no integer exist in the range, e.g., t = 1 and d = p′ = 4.
Therefore, this case does not hold.

• If 1 ≤ (
t+dei+1
p′×2x − 1)− ( t

p′×2x ), there must be an integer
in the range regardless of these values. Then, we obtain

x ≤ log2(
dei+1
2p′ ). Therefore, pei = p′ × 2

blog2(
dei+1

2p′ )c.

For the generated schedules, the resource constraint must
be satisfied. The number of working-mode entries that flow
f∗i introduces to nj is

w∗i,j(H
vp) =


Hvp

/p∗i if nj = sn∗i or nj = dn∗i
2× Hvp

/p∗i if nj ∈ π∗i and nj 6= sn∗i and nj 6= dn∗i
0 otherwise.

(1)
If nj is the source or destination, it is only used once in one
period. Otherwise, the node receives a packet and then sends
it; thus, the node is used twice. Then, the number of working-
mode entries of node nj is wvpj =

∑
∀f∗i ∈F

w∗i,j(H
vp). If

∀nj , wvpj ≤W , the generated schedules are feasible.
Then, for this virtual-period method (VP), we calculate the

reservation of time slots and nodes. We consider a certain time
interval [0, y), and the packets with deadlines before time slot
y must be delivered. Thus, the number of time slots reserved
for flow fei is b ypei c × c

e
i . In fact, for event-triggered flow fei ,

the smallest release interval between two consecutive packets
is dei + 1. Therefore, in the worst case, only b y

dei+1c× c
e
i time

slots are used. Comparing the time slots that are actually used
and the reserved time slots, we can obtain that

b y
dei+1
c × cei

b y
pei
c × cei

=
b y
dei+1
c × cei

b y

p′×2
blog2(

de
i
+1

2p′ )c
c × cei

≤
b y
dei+1
c

b y
de
i
+1

2

c ≤
1

2
.

Thus, the utilization of reserved time slots is not greater than
50%, and at least half of the time slot reservations are wasted.
The calculation of node reservations is similar to that of time
slot reservations. In each reserved slot, two nodes are reserved.
Therefore, the number of node reservations for flow fei is
b ypei c × c

e
i × 2, and less than 50% of reservations are used.



B. Slot-Multiplexed Method

The VP method wastes some reserved time slots. To mini-
mize such waste, we propose a slot-multiplexed method (SM).
For flow fei , its time slot reservation is repeated after every
dei+1 time slots. We define the dei+1 time slots as a reservation
interval. In different reservation intervals, the reserved time
slots must be at the same places. For example, Fig. 2 shows
simple SM scheduling, where the deadline of the event-
triggered flow is 4 and the period of the two time-triggered
flows is 10. Their routing paths are the same as those in Fig.
1(a). The gray blocks are reserved for the event-triggered flow.
They are placed at the first and second time slots of every
reservation interval. In each reserved time slot, all nodes in
its routing path are reserved for this flow. If a node is passed
through by an event-triggered flow, at one reserved time slot, it
is assigned to work in two modes Rx and Tx, e.g. node n0. Its
working method is as follows: if the node has not received the
packet, it will listen to the channel; if the node has received the
packet at a time slot, it will send it at the next reserved time
slot. For example, node n0 receives the packet at time slot 1,
and then will send it at time slot 5. In this way, whenever an
event-triggered flow fei releases a packet, in its active interval,
there must be cei time slots that are reserved for transmitting
the packet. We prove this in Theorem 2. Then, we can know
that when the objective is to minimize the number of reserved
time slots, the feasible solution found by SM is optimal. This
is because if the reserved time slots in a reservation interval
are less than cei , the packet released at the beginning of the
interval is unschedulable.
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Fig. 2. An illustration of the slot-multiplexed method

Theorem 2. For the SM method, whenever an event-triggered
flow fei releases a packet, in its active interval there must be
cei time slots that are reserved to transmit the packet.

Proof. Suppose that flow fei releases a packet at time slot t.
Its active interval is [t, t + dei ]. When the active interval is a
reservation interval, there must be cei time slots. Otherwise, we
set that the reservation interval includes t1 to t, and the ending
is t2. R(t1, t−1) denotes the number of reserved time slots for
fei between t1 and t−1. We know R(t1, t−1)+R(t, t2) = cei .
Since the reserved time slots are at the same places in different
intervals, R(t1, t−1) = R(t2+1, t+dei ). Hence, R(t1, t−1)+
R(t, t2) = R(t2+1, t+dei )+R(t, t2) = R(t, t+dei ) = cei .

In SM, the superframe length is Hsm = LCM(de1 +1, de2 +
1, ..., pt1, p

t
2, ...). If dei + 1 is relatively prime with ptj , then

the superframe length may be very long, making it difficult to
satisfy the resource constraint W . Hence, we first check the
constraint. For node nj , the number of working-mode entries
introduced by time-triggered flow f ti can be calculated based
on Eq. (1). If nj is in the path of event-triggered flow fei , it will
be used at each reserved slot. Thus, the number of working-
mode entries introduced by fei is calculated as follows.

w̄ei,j(H
sm) =

{
cei × Hsm

/(dei+1) if nj ∈ πei
0 otherwise.

Therefore, the number of working-mode entries of nj
is wsmj =

∑
∀ft

i∈F t wti,j(H
sm) +

∑
∀fe

t ∈F e w̄ei,j(H
sm). If

∀nj , wsmj ≤W , we invoke Algorithm 1 to schedule flows.

Algorithm 1 Time slot and channel assignment in SM
Input: V , F
Output: Schedule S, if feasible

1: ∀vk ∈ V , c′k = 0;
2: for t = 0 to (Hsm − 1) do
3: V ′ = V ;
4: while idleCHt 6= ∅ and V ′ 6= ∅ do
5: find the packet vk with the earliest absolute deadline in V ′;
6: V ′ = V ′ − {vk};
7: if t > the absolute deadline of vk then
8: return Unschedulable;
9: if vk belongs to an event-triggered flow fei then

10: A = {t+ q × (dei + 1)|∀q ∈ [0, H
sm

dei+1
)};

11: if ∀a ∈ A, idleCHa 6= ∅ and ∀nj ∈ πei , nj 6∈ usedNodea
then

12: S = S + {< fei , a, b > |∀a ∈ A, b ∈ idleCHa};
13: update idleCHa and usedNodea;
14: if (+ + c′k) == cei then V = V − {vk};
15: if vk belongs to a time-triggered flow f ti then
16: if ∀nj ∈ τ tk,c′ti

, nj 6∈ usedNodet then
17: S = S + {< τ t

k,c′ti
, t, b > |b ∈ idleCHt};

18: update idleCHt and usedNodet;
19: if (+ + c′k) == cti then V = V − {vk};
20: if V == ∅ then return S;

Algorithm 1 assigns time slots and channels to the packets in
set V . In the beginning, V includes all time-triggered packets
that are released in the superframe and the event-triggered
packets that are released at slot 0. The other event-triggered
packets are excluded because the subsequent assignments are
repeated. V ′ is the set of packets that have not been attempted
to be scheduled at the current slot. For each packet vk ∈ V , c′k
denotes the number of time slots that have been assigned to vk.
idleCHa and usedNodea are the set of idle channels and the
set of used nodes at time slot a, respectively. Each element
< fei (or τ tk,g), TS,CH >∈ S denotes event-triggered flow
fei or the g-th hop of the time-triggered packet vk that occupies
time slot TS and channel CH . This algorithm is based on
the EDF (Earliest Deadline First) policy [16], which assigns a
higher priority to the packet with an earlier absolute deadline.

At each time slot t, if there exist idle channels in idleCHt

and packets in V ′ (line 4), then the packet with the highest
priority is attempted to be scheduled (line 5). When the
selected packet vk is event-triggered (line 9), we must check
whether the t-th time slot in all reservation intervals can be
assigned to the packet or not (lines 10–11). If there is no
node conflict between the current event-triggered flow and the
occupied nodes, then the event-triggered flow can be scheduled
at the t-th time slot and on a channel in idleCHa (line 12).
The occupied channel is removed from idleCHa, and the used
nodes are added into usedNodea (line 13). If cei time slots
are assigned to fei , its schedule finishes (line 14). For time-
triggered packet vk (lines 15–19), its schedule is similar to
event-triggered packets. The difference is that we only check
whether the current transmission τ tk,c′ti

can use time slot t
or not, and do not consider the t-th time slot in the next
period. If a packet misses its deadline (line 7), the network
is unscheduled (line 8). Otherwise, the result S is returned
when all schedules are completed (line 20).



The time complexity of this algorithm is O(|V | ·Hsm). In
a certain interval [0, y), the number of time slots reserved for
flow fet is b y

dei+1c × c
e
i , and the number of node reservations

is b y
dei+1c × c

e
i × (cei + 1) because in each time slot all nodes

in its routing path are reserved.

C. Reverse-Scheduling Method

The SM method minimizes the number of reserved time
slots, but all nodes in routing paths have to be occupied in
these reserved time slots. We propose a reverse-scheduling
method (RS) to reduce both time slot and node reservations.
In this method, a reserved time slot is allowed to be used by
only one transmission unless no other time slot is available
for another packet of the same flow. The time slots reserved
for transmitting one packet are called an arrangement of time
slots. We assume that if a packet is released at a time slot, it
is ready to be transmitted in that slot. An arrangement of time
slots can provide service for the packets released before or at
the first time slot of the arrangement, and their deadlines are
not later than the last slot of the arrangement. Fig. 3 shows the
schedules generated by RS for the same flow set considered
in Fig. 2. The packets released between TS0 and TS3 can
use the first arrangement. However, the packet released at
TS4 misses the first hop at TS3. It has to wait for the next
arrangement to be scheduled, and the last time slot of the next
arrangement cannot be after its deadline. In this way, although
event-triggered packets can be released at any time slot, only
part of them need to be scheduled, e.g., the packets released at
TS0 and TS4, and we call them critical packets. The others
can reuse the reserved time slots. However, these reserved slots
are still dedicated since two consecutive packets of the same
flow cannot exist simultaneously.
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Fig. 3. An illustration of the RS method

For each event-triggered flow fei , the release time of the first
critical packet is ri,1 = 0, and its deadline is di,1 = dei . We
define the end-to-end latency li,j of the j-th critical packet as
the time between its first reserved time slot and its deadline.
Thus, the release time of the second critical packet is ri,2 =
di,1 − li,1 + 1, and the deadline is di,2 = ri,2 + dei . Therefore,
the release time and deadline of the k-th critical packet are

ri,k = (k − 1)× dei + (k − 1)−
∑
∀j∈[1,k)

li,j (2)

di,k = k × dei + (k − 1)−
∑
∀j∈[1,k)

li,j . (3)

In a certain interval [0, y), we need to reserve k arrangements
of time slots for flow fei , i.e., di,k ≤ y ≤ di,(k+1). From Eq.
(2) and (3), we know that if we want to decrease the number
of reserved arrangements, the latency

∑
∀j∈[1,k) li,j should be

reduced. Therefore, RS reserves time slots for critical event-
triggered packets from their deadline to their release time. The
basic idea of RS, called BasicRS, is as follows:

Step (1): The time-triggered packets released at time slot 0
and the first critical packets of all event-triggered flows are
included in packet set V .
Step (2): The packet with the highest EDF priority in set V is
selected, breaking ties by prioritizing the flow with the smaller
ID. Then, if the packet is time-triggered, the method finds cti
available time slots from its release time to its deadline; if the
packet is event-triggered, the method finds cei available time
slots from its deadline to its release time.
Step (3): After a packet is scheduled, the next packet of the
same flow is added to V . Then, the execution jumps to Step(2).

The method should run until one superframe Hrs is finished.
However, we cannot calculate the superframe length Hrs using
the same approaches as Hvp and Hsm. Critical packets are
aperiodic. The release time of a critical packet is determined
by the reservations of its previous critical packet, and the
reservations are unknown before the previous critical packet
is scheduled successfully. Therefore, for RS, only when the
schedules in one superframe are generated, can we know the
superframe length. In VP and SM, the schedules are executed
repeatedly between the first and last time slots of a superframe.
Similarly, in RS, there also exist two special time slots α and β
(α < β). They meet the following conditions: (1) the schedules
at time slots α + g and β + g (0 < g) are the same; (2) the
schedules at time slots α− g and β − g (0 ≤ g) are different.
Thus, the network first executes the schedules from TS0 to
TSβ, then jumps to TSα and repeats the schedules between
TSα and TSβ. Therefore, β corresponds to the superframe
length. In Theorem 3, we analyze its upper bound.

Theorem 3. When the BasicRS method is used to sched-
ule a network, the superframe length is not greater than
Π∀fe

i
Π∀ηi∈[1,dei+1] min{ηi + 1, cei + 1}×H ′rs, where H

′rs =
max∀ft

i∈F t{pti}.

Proof. We use ξti,t =< ε, η > and ξei,t =< ε1, η1, ε2, η2, ... >
to describe the status of flow f ti and flow fei at time slot
t, respectively. For a time-triggered flow, ξti,t means that at
the beginning of time slot t, its packet still has ε hops to be
transmitted in the following η time slots. For an event-triggered
flow fei at one time slot, there are probably multiple critical
packets to be scheduled. The j-th packet of these corresponds
to (εj , ηj). We use ξt =< ξt1,t, ξ

t
2,t, ..., ξ

e
1,t, ξ

e
2,t, ... > to denote

the network status at time slot t. At two time slots α and β, if
ξα = ξβ , then the schedules after time slot β are the same as
those after time slot α. Additionally, η reflects the deadline of
the first packet and the starting offset of the following packets,
and ε and c∗i represent the execution time of the first packet
and following packets, respectively. When the deadlines and
execution times of all packets are determinate, based on the
EDF policy the schedules must be unique. Hence, the upper
bound of the superframe length is at most β − 1.

We know that ∀f ti , ξti,0 = ξt
i,H′rs

= ξt
i,2H′rs

= ... =<

cti, p
t
i >. We assume that there are at most x different statuses

for event-triggered flows. Hence, if the network runs for x×
H
′rs time slots, then there must be two time slots that have the

same status. Therefore, β ≤ x×H ′rs+1, and the upper bound
of the superframe length is not greater than x ×H ′rs. Then,



we calculate x. We know that for flow fei , ηj ∈ [1, dei + 1].
When ηj takes a value in this range, εj probably takes ε(ηj)
values, where ε(ηj) = min{ηj + 1, cei + 1}. That is because
when ηj ∈ [1, cei ] and the network is schedulable, εj cannot
be greater than ηj . If εj > ηj , then there are not enough
time slots to transmit the remaining εj hops. Hence, εj can
be any value in {0, 1, ..., ηj}, i.e., ηj + 1 values. When ηj is
greater than cei , εj can be a value in {0, 1, ..., cei}, i.e., cei + 1
values. In the extreme case, at one time slot, dei + 1 critical
packets that belong to the same flow need to be scheduled,
and their ηj differ from each other by one time slot. Thus,
ξei,t =< ε1, 1, ε2, 2, ..., εdei+1, d

e
i + 1 >. Therefore, there are at

most Π∀ηi∈[1,dei+1] min{ηi + 1, cei + 1} statuses at one time
slot for an event-triggered flow fei . All event-triggered flows
are independent of each other. Thus, when we consider all of
them, there are at most Π∀fe

i
Π∀ηi∈[1,dei+1] min{ηi+ 1, cei + 1}

statuses. Therefore, the upper bound of the superframe length
is Π∀fe

i
Π∀ηi∈[1,dei+1] min{ηi + 1, cei + 1} ×H ′rs.

Algorithm 2 The reverse-scheduling method
Input: F
Output: S, α, β

1: for (β = (H
′rs − 1); ;β+ = H

′rs) do
2: S = S +BasicRS(β − (H

′rs − 1), β);
3: if ∃nj , wrsj > W then
4: return Unschedulable;
5: for (α = 0;α < β;α+ = H

′rs) do
6: V ′ = Check(S, α, β);
7: if Schedulable(S, α, V ′) then
8: return S, α and β;

Method Check(S, α, β)
Input: S, α, β
Output: Unschedulable packet set V ′

1: V ′ = the event-triggered packets that have not finished at time slot β;
2: for ∀vk ∈ V ′ (vk belongs to fei ) do
3: if ∃(εa, ηa) ∈ ξei,α, εk ≤ εa, ηa ≤ ηk then
4: V ′ = V ′ − {vk};
5: return V ′;

In the worst case, nodes need a huge local memory to store
schedule information of such a long superframe. Therefore, we
propose Algorithm 2 to construct a short superframe such that
the resource constraint can be satisfied. In Algorithm 2, we
first use Function BasicRS(starting TS, ending TS) to generate
schedules in each H

′rs (line 2). When a one-H
′rs schedule

is generated, we check if all nodes can satisfy the resource
constraint (line 3). The number of working-mode entries wrsj
can be counted based on the generated schedule S. If any node
does not satisfy the resource constraint, then the network is
unschedulable (line 4). Otherwise, we try to find the starting
time slot α of periodic schedules (line 5). Function Check()
checks if there are unschedulable event-triggered packets when
the schedules are repeated between α and β (line 6). In
Check(), set V ′ includes the event-triggered packets that have
not finished by TSβ (line 1 of Check()). For each packet in
V ′, if there are enough reserved time slots after TSα (lines
2–3 of Check()), then the packet can be scheduled. Otherwise,
it is re-scheduled from TSα (line 7), and the occupied time
slots by the packets in V ′ can be re-used. If all packets in V ′

are scheduled successfully, the schedules between the current
α and β can be executed repeatedly (line 8), and β is the
superframe length Hrs.

The time complexity of Check() is O(|V |2). For Algorithm
2, the number of iteration of for loop in line 1 is O( H

rs

H′rs
),

where Hrs is limited by the resource constraint W . The time
complexities of lines 2, 5 and 7 are O(H

′rs|V |), O( H
rs

H′rs
)

and O(H
′rs|V |), respectively. Therefore, the time complexity

of RS is O(( H
rs

H′rs
)2Hrs|V |).

In a certain interval [0, y), the number of time slots reserved
for flow fei is not less than b y

(dei+1)−(cei−1)
c×cei because in the

best case, the latency is cei , and then, the difference between
the release times of two sequence critical packets is (dei +1)−
(cei −1). Similarly, the number of node reservations is not less
than b y

(dei+1)−(cei−1)
c × cei × 2 .

V. COMPARISON

A relative comparison of the three methods in terms of
schedule length and resource requirements is summarized in
Table I. As the table shows, the simplest method VP has the
shortest superframe, while more than half of reserved com-
munication resources are wasted. Therefore, if communication
resources are ample, VP is the best choice. The SM method
reserves the minimum number of time slots. However, its
node reservation requirement is very high and the superframe
length may be very long when the parameters in LCM() are
relatively prime. Hence, if only a small number of nodes are
occupied and dei + 1 is not relatively prime with the others,
then SM becomes an effective approach. For the RS method,
we cannot calculate its superframe length. However, its node
reservation may be the least, and, unlike VP, it does not
waste resources. Therefore, RS becomes an effective approach
when its schedules can be constructed. Comparing the three
algorithms, we know that VP is the simplest; SM has the
best time-sensitive performance; RS is the most flexible. Thus
the three methods have different advantages. Therefore, event-
triggered flows should be scheduled by different algorithms
based on their features. In the next section, we propose an
algorithm that combines the advantages of the three methods
to solve the scheduling problem.

VI. A COMBINED ALGORITHM

Considering |F e| event-triggered flows and 3 methods, there
are 3|F

e| possible combinations for scheduling. When the
number of flows is very small, the execution time to explore all
combinations may be acceptable. However, for most cases, we
need a fast algorithm to find a feasible solution. Our proposed
combined algorithm (CA) is shown in Algorithm 3. In the
beginning of CA, all event-triggered flows are scheduled by
VP because if there are enough communication resources, VP
is the fastest and simplest. Then, the combination is checked
to verify the schedulability. If it is not schedulable, we adjust
flows to be scheduled by SM or RS until a feasible solution
is found.

The assignment process is as follows. Set F vp (F sm or F rs)
includes the flows that are scheduled by VP (SM or RS). Then,
F vp ∩ F sm ∩ F rs = ∅ and F vp ∪ F sm ∪ F rs = F e. First, all
event-triggered flows are in F vp (line 1). Then, we remove
a flow from F vp to one of the other two sets. To reduce the
resource waste, the removed flow fei has the largest resource



TABLE I
COMPARISON AMONG THREE METHODS

Method Periodicity (superframe length) Node reservation Time slot reservation
VP Method = max∀f∗∈F {p∗i } =

∑
∀fei
b y
pei
c × cei × 2 =

∑
∀fei
b y
pei
c × cei

SM Method = LCM(de1 + 1, de2 + 1, ..., pt1, p
t
2, ...) =

∑
∀fei
b y
dei+1

c × cei × (cei + 1) =
∑
∀fei
b y
dei+1

c × cei
RS Method ≤ Π∀fei Π∀ηi∈[1,dei+1] min{ηi + 1, cei + 1} ×H′rs ≥

∑
∀fei
b y
dei+2−cei

c × cei × 2 ≥
∑
∀fei
b y
dei+2−cei

c × cei

utilization cei
dei+1 (line 8). If the period of fei is not relatively

prime with those of other time-triggered flows and the removal
does not add node reservation (line 9), it is added to F sm (line
10). Otherwise, it is added to F rs (line 12). Function AddRes()
checks the addition of node reservation. If cei × (cei + 1) >

bd
e
i+1
pei
c×cei ×2, then AddRes() returns true. If all flows in F vp

have been moved out and the network is still unschedulable,
then the flow having the maximum node reservations in F sm

is removed to F rs until F sm = ∅ (lines 13–15). Finally, all
event-triggered flows are in F rs. Considering both time slot
reservations and node reservations, RS may have the fewest
reservations. It is opposite to VP. Therefore, the adjustment is
to remove flows from F vp to F rs.
Algorithm 3 The combined algorithm

Input: F
Output: Schedule S, if feasible

1: F vp = F e; F sm = F rs = ∅;
2: while true do
3: F t = F t + V P (F vp);
4: if all necessary conditions are satisfied then
5: if RS(F, F sm) returns S then
6: return S;
7: if F vp 6= ∅ then
8: find a flow fei with the largest cei

dei+1
in F vp;

9: if (∀f tj , (dei + 1)/⊥ptj or (dei + 1) = ptj) and !AddRes(fei ) then
10: F sm = F sm + {fei }; F vp = F vp − {fei };
11: else
12: F rs = F rs + {fei }; F vp = F vp − {fei };
13: else if F sm 6= ∅ then
14: find a flow fei with the most node reservations in F sm;
15: F rs = F rs + {fei }; F sm = F sm − {fei };
16: else break;
17: return Unschedulable;

For each combination of F vp, F sm and F rs, we use the
following algorithm to schedule them. First, the flows in F vp

are changed to virtual-period flows (line 3). Then, we propose
three necessary conditions as follows. If set F does not satisfy
these conditions, it must be unschedulable. Thus, the execution
time can be reduced effectively.

Condition 1: the utilization of each node is not greater than
1, i.e., ∀nj ∈ N,∑
∀fti∈F

t

δi,j
pti

+
∑

∀fei ∈F
sm

εi,j × cei
dei + 1

+
∑

∀fei ∈F
rs

δi,j
dei + 2− cei

≤ 1,

where δi,j = 1 if nj is the source or destination of flow f ti
and δi,j = 2, if f ti passes through nj ; otherwise, δi,j = 0. If
fei uses nj , εi,j = 1; otherwise, εi,j = 0.

Condition 2: the network utilization is not greater than the
number of channels m, i.e.,∑
∀fti∈F

t

cti
pti

+
∑

∀fei ∈F
sm

cei
dei + 1

+
∑

∀fei ∈F
rs

cei
dei + 2− cei

≤ m.

Condition 3: the lower bound of the number of working-
mode entries is not greater than W . For the RS method, the
shortest superframe is H

′rs. F vp is added into F t. F sm does
not increase the superframe length. Thus, the lower bound of
the superframe length is H

′rs. Therefore,

∑
∀fti∈F

t

wti,j(H
′rs)+

∑
∀fei ∈F

sm

w̄ei,j(H
′rs)+

∑
∀fei ∈F

rs

ŵei,j(H
′rs) ≤W,

where the lower bound of RS is as follow.

ŵei,j(H
′rs) =


H
′rs
/dei+2−cei if nj = snei or nj = dnei

2× H
′rs
/dei+2−cei if nj ∈ πei and nj 6= snei

and nj 6= dnei
0 otherwise.

In Function RS(), the flows in F sm need to reserve all nodes
on their paths. This is the only difference from Algorithm 2.
Thus, the time complexity of RS() is O(|N |( H

rs

H′rs
)2Hrs|V |).

The number of iterations of while loop in line 2 is
O(|F |). Therefore, the time complexity of Algorithm 3 is
O(|F ||N |( H

rs

H′rs
)2Hrs|V |).

VII. EVALUATION

In this section, we will evaluate our algorithm based on the
topologies of a physical WSAN testbed and random topolo-
gies. Two metrics are used for performance evaluation: (1)
schedulable ratio is the percentage of test cases for which an
algorithm is able to find a feasible schedule, and (2) execution
time is the time required to generate a feasible schedule.
We compare our algorithm CA and the three fundamental
methods VP, SM and RS with three methods SS [13], EDF
and UP. UP shows the percentage of cases that satisfy the
three necessary conditions, thereby showing a conservative
upper bound of schedulable ratio that an optimal algorithm
can achieve. The original SS method allows time-triggered
packets to be discarded when event-triggered packets are using
shared time slots. To make it suitable for our problem, SS
does not assign shared time slots. The pure EDF policy is an
effective scheduling algorithm for time-triggered flows. In our
evaluation, the EDF method schedules not only time-triggered
packets but also all possible event-triggered packets. If two
event-triggered packets belong to the same flow, EDF can
assign the same time slots to them.

All algorithms are written in C and run on a Windows ma-
chine with 3.4GHz CPU and 16GB memory. The parameters
used in this section are summarized in Table II. The number of
flows is d 12×n×fe, and there are d 12×n×f×ee event-triggered
flows. Source nodes and destination nodes are randomly se-
lected, and are not repeatedly used. Random topologies are
generated based on the node density ρ. The harmonic periods
are randomly selected in {10 × 2i|i ∈ [1, 10]}, and the
deadlines of event-triggered flows are in {10× i|i ∈ [2, 210]}.
We use Conditions 1 and 2 to calculate the utilization of the
access point and network. The access point is the hotspot, and
its utilization is larger than network utilization and is a key
factor that affects the schedulability. The schedule information
includes source, destination, Rx/Tx, TS and CH. Rx/Tx and
CH can be stored in an unsigned char. Hence, a working-
mode entry needs 5 bytes. We set the memory size to 50kB
and 100kB. Their corresponding W are 10240 and 20480,
respectively.



TABLE II
PARAMETERS

n Number of nodes
m Number of channels
ρ Node density of a network
f Fraction of sources and destinations
e Fraction of event-triggered flows
u Utilization of the access point
W Upper bound of the number of working-mode entries

A. Real Topologies

We use the topologies of an indoor testbed [20] deployed in
Jolley Hall of Washington University in St. Louis. The testbed
consists of 70 TelosB motes, each equipped with CC2420
radios and compliant with the IEEE 802.15.4e standard. All
nodes take turns broadcasting packets. If the packet reception
ratio between two nodes is higher than 80%, a reliable link is
considered between them. Thus, we obtain two real topologies
at transmission power levels 0dBm and −5dBm.
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Fig. 4. Schedulable ratio with a topology of 0dBm

Fig. 4 shows the comparison of schedulable ratios when
TX power is 0dBm. The parameters are f ∈ [0.2, 0.9], n =
70,m = 6, e = 0.2 and W = 10240. For each f , 10000
test cases are randomly generated. According to the utilization
u, these test cases are presented in different sub-figures. The
results are normalized with UP as the baseline. As u and f
increase, the schedulable ratios decrease because it is difficult
to find a feasible solution when the solution space becomes
more and more complex. Among all methods, CA has the
highest schedulable ratio. When u > 90%, CA can still
solve more than half of test cases. VP and SS are similar.
In the SS method, event-triggered packets are considered
more important than time-triggered packets. After scheduling
all event-triggered packets, time-triggered packets start to be
scheduled. SS pays more attention to the criticality, but not
the temporality. VP considers only temporality. Therefore, it
has better schedulability than SS. For the SM method, its
superframe length is very long, and each reserved time slot
needs multiple working-mode entries to describe. The local
memory of a TelosB mote is not sufficient to store all these
entries. Only when f is very small can a small part of test cases
be scheduled. Although SM reserves the minimum number of
time slots, using SM alone may not be practical. EDF has
to handle all possible event-triggered packets. High workload
leads to low schedulable ratio. In the following, the simulation
results will not include SM and EDF.

(a) u ∈ [80%, 90%), RS (b) u ∈ [90%, 100%), RS

(c) u ∈ [80%, 90%), CA (d) u ∈ [90%, 100%), CA
Fig. 5. Execution time
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Fig. 6. Schedulable ratio under varying parameters

Fig. 5 shows the execution times of RS and CA. The
corresponding test cases are the same as Fig. 4. VP and SS can
find a feasible solution within 2 ms. As the number of flows
and the access point utilization increase, the execution time
of RS increases because there are more transmissions to be
dealt with. CA repeatedly executes to find a feasible solution.
Therefore, the impact of u and f on CA is not obvious. For
all test cases, the execution time of CA is less than 7s. This
is acceptable to handle dynamic re-deployments of industrial
applications.

Fig. 6 shows the comparison of schedulable ratios under
varying parameters. A bar corresponds to the average of a
curve from f = 0.3 to 0.9. From these figures, we find that:
• The decrease of power level leads to a slightly decrease
of schedulable ratios because when the transmission power
reduces, the number of hops increases.
• When the local memory doubles, the schedulable ratio
increases by 4% and 1% in the two sub-figures. Fig. 7 shows
the memory size required by CA and VP under varying u.
When u > 70%, VP can hardly find feasible solutions.
Hence, there is no corresponding subfigure. Memory needed
by CA is about four times that by VP. CA trades memory for
schedulability. 50kB memory is sufficient for most test cases.
• If the number of channels increases, then more resources can
be used, and the performance should be improved. However,
the increase of m has almost no impact on the schedulable
ratio. The reason is that regardless of how many channels are
used, the utilization u is unchanged.
• When the fraction of event-triggered flows increases from
0.2 to 0.3, the schedulable ratio obviously decreases. Each
combination of these parameters corresponds to two sub-
figures that are similar to Fig. 4(c) and (d). We do not show



those similar results. Only the parameter combination with
e = 0.3 has a difference that is shown in Fig. 8. When f = 0.3
and u ∈ [80%, 90%), the schedulable ratio of RS is very low.
When u is fixed, the fewer flows, the more utilization each
flow has. Hence, their periods and deadlines are short. These
lead to more conflicts and long latencies. In this case, RS is
difficult to construct the periodicity. CA changes some event-
triggered flows to time-triggered flows. Although the change
makes the flows consume more resources, the consumption is
acceptable when u ∈ [80%, 90%). In Fig. 8(b), the schedule
ratio of CA sharply reduces because when u > 90%, there is
almost no redundant resources.

(a) u ∈ [60%, 70%), V P (b) u ∈ [60%, 70%), CA

(c) u ∈ [80%, 90%), CA (d) u ∈ [90%, 100%), CA

Fig. 7. Comparison of memory size
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Fig. 8. Schedulable ratio when e = 0.3

B. Random Topologies

To evaluate the impact of n and ρ on schedule ratios, we ran-
domly generate topologies based on the equation A = nd2

√
27

2πρ
[21], where A is a square area, and d denotes the transmitting
range of 40 m. A gateway is deployed at the center of the
square A, and n − 1 nodes are randomly deployed in A. If
the distance of two nodes is less than d, there is a reliable
link between them. Fig. 9 shows the schedulable ratio under
varying n. The other parameters are m = 6, ρ = 1, f = 0.8,
e = 0.2 and W = 10240. Our combined algorithm CA
outperforms the others. When u is fixed, the higher the number
of nodes, the lesser the node conflicts. Thus, as n increases,
the schedulable ratio of CA and RS increases. Fig. 10 shows
the schedulable ratio under varying ρ. When u ∈ [80%, 90%),
as the increase of ρ, the ratios slightly increase because the
number of available relay nodes increases, and the number of
hops decreases. When u ∈ [90%, 100%), the test cases are
hard to be scheduled regardless of the value of ρ.

VIII. CONCLUSION

In this paper, we focus on the real-time scheduling problem
for time-triggered and event-triggered hybrid networks. In
existing approaches, time-triggered packets are dropped when
event-triggered packets are transmitted. Our algorithms do not
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Fig. 9. Schedulable ratio under varying n
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Fig. 10. Schedulable ratio under varying ρ

drop time-triggered packets and schedule all time- and event-
triggered packets under real-time constraints. Our proposed
combined algorithm reserves as few time slots as possible
and constructs feasible superframes. The simulations indicate
that our combined algorithm significantly outperforms the
others. In the future, we will study distributed scheduling
algorithms where each node dynamically generates schedules
based on the behaviors of event-triggered flows. We shall also
consider preemptive scheduling where event-triggered flows
are allowed to preempt low-critical time-triggered flows under
system stability constraints.
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