
IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. X, NO. X, X X 1

Joint Algorithm of Message Fragmentation and
No-Wait Scheduling for Time-Sensitive Networks

Xi Jin∗†‡, Member, IEEE, Changqing Xia∗†‡, Member, IEEE, Nan Guan§, and Peng Zeng∗†‡
∗Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang 110016, China

†Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
‡Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China

§Department of Computing, Hong Kong Polytechnic University, Hong Kong

Abstract—Time-sensitive networks (TSNs) support not only
traditional best-effort communications but also deterministic
communications, which send each packet at a deterministic time
so that the data transmissions of networked control systems can
be precisely scheduled to guarantee hard real-time constraints.
No-wait scheduling is suitable for such TSNs and generates
the schedules of deterministic communications with the minimal
network resources so that all of the remaining resources can be
used to improve the throughput of best-effort communications.
However, due to inappropriate message fragmentation, the real-
time performance of no-wait scheduling algorithms is reduced.
Therefore, in this paper, joint algorithms of message fragmenta-
tion and no-wait scheduling are proposed. First, a specification
for the joint problem based on optimization modulo theories is
proposed so that off-the-shelf solvers can be used to find optimal
solutions. Second, to improve the scalability of our algorithm, the
worst-case delay of messages is analyzed, and then, based on the
analysis, a heuristic algorithm is proposed to construct low-delay
schedules. Finally, we conduct extensive test cases to evaluate
our proposed algorithms. The evaluation results indicate that,
compared to existing algorithms, the proposed joint algorithm
improves schedulability by up to 50%.

Index Terms—Time sensitive network, real-time scheduling,
message fragmentation, networked control system

I. INTRODUCTION

Time-sensitive networks (TSNs) are an emerging industrial
network technology based on Ethernet networks and extend a
set of IEEE standards to improve the controllability of indus-
trial networks. Thus, in addition to best-effort communications
supported by Ethernet networks, TSNs also support determin-
istic communications that have been widely considered as an
effective solution to guarantee end-to-end delay constraints in
hard real-time industrial systems.

In networked control systems, TSNs have been adopted [1],
[2], [3]. Deterministic communications contain control com-
mands and critical sensing data, and the other data adopts best-
effort communications [4]. Deterministic communications and
best-effort communications have different objectives. The real-
time performance of deterministic communications is the most
important. Before they start to transmit, their deterministic
schedules must be generated so that the transmission process
can be controlled to guarantee hard real-time constraints.
For best-effort communications, there is no strict constraint.
Their schedules do not need to be generated in advance, and
networks just try to transmit them as soon as possible. In a
TSN switch, the two kinds of communications share a fixed

number of output queues. Deterministic communications must
be assigned dedicated queues, while best-effort communica-
tions require more queues to improve network throughput [5].
Therefore, determining how to assign and utilize the queues
are the key to improving network performance.

This paper focuses on store-and-forward switching, be-
cause compared to cut-through switching, store-and-forward
switching is supported by more off-the-shelf TSN products.
For example, CISCO IE 4000 [6] and NXP SJA1105 [7]
support only store-and-forward switching, while no off-the-
shelf TSN product supports only cut-through switching. In
store-and-forward networks, no-wait scheduling is an effective
method to make a performance trade-off between deterministic
communications and best-effort communications [8]. Under
no-wait scheduling, once a network switch receives a packet, it
sends the packet immediately, i.e., only one queue is needed to
cache the scheduled packets. Thus, when a no-wait scheduling
algorithm is used to generate schedules for deterministic
communications, except the occupied queue, all of the other
queues can be used by best-effort communications. Therefore,
no-wait scheduling algorithms not only generate schedules for
deterministic communications on the dedicated queue, but also
improve the performance of best-effort communications.

A message

1620 bytes

Traditional

fragmentation

A CB

MTUA-B

D

B-C

C-D

A-B

B-C

C-D

A new

fragmentation

Header

time

1460 bytes 160 bytes

810 bytes 810 bytes

The network

Reduced delayNo-wait scheduling

Fig. 1: Effect of message fragmentation on no-wait scheduling

However, when no-wait scheduling algorithms are adopted,
the following issue should be considered. On the IP layer,
a large message from the TCP layer must be fragmented
into several smaller pieces. Each piece and its added pack-
et header constitute a complete packet. These packets are
then transmitted separately and reassembled at destination

2 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. X, NO. X, X X

devices. In this process, fragmentation algorithms will affect
the transmission delay because smaller packets have higher
parallelism. For example, in Fig. 1, a message of 1620 bytes
must be fragmented into two pieces. In traditional Ethernet
fragmentation, the length of the first packet is equal to the
maximum segment size (MSS) plus a packet header, and
the remaining part is contained in the second packet. Since
no-wait scheduling algorithms do not allow a time interval
between two consecutive hops of a packet, the second packet is
postponed by the first packet and cannot be transmitted earlier.
In another fragmentation, to reduce the long delay, the message
can be fragmented into two pieces of 810 bytes each. Although
the number of packets is unchanged, the delay is reduced
by approximately one-third. Message fragmentation exists in
TSNs [5]. However, there is currently no work that considers
message fragmentation algorithms and no-wait scheduling
algorithms together. This has led to some optimizable solution
spaces being ignored.

Therefore, in this paper, a joint algorithm is proposed that
fragments deterministic messages into packets of optimized
sizes and schedules the packets under hard real-time con-
straints based on a no-wait strategy to improve the real-time
performance of TSNs. When designing the joint algorithm,
the following challenge is present. In the interest of saving
resources, large packets should be used to reduce the overhead
of fragmenting and reassembling. However, in the interest
of temporality, a message should be fragmented into small
packets, because small packets have higher parallelism and
are easy to schedule. Thus, to address the above challenge,
our proposed algorithms make a trade-off between these two
aspects. The specific contributions are as follows.

First, a specification for the joint problem based on opti-
mization modulo theories (OMT) is proposed. Since the joint
problem is NP-hard, there is no polynomial time algorithm for
finding optimal solutions. Thus, we formulate the problem as
an OMT specification with real-time constraints to minimize
the number of fragmented packets, and then invoke off-the-
shelf solvers, e.g. Microsoft Z3, to solve it. Our evaluations
indicate that, in an acceptable time, the OMT-based method
can find optimal solutions for small networks.

Second, to improve the real-time performance of large
networks, we calculate the worst-case delays of messages
based on the recursive function shown in Theorem 2. Then,
two corollaries are proposed on how to construct low-delay
transmissions.

Third, based on the two corollaries, a joint algorithm is
proposed that uses packets from large to small to construct
schedules under hard real-time constraints. Thus, the proposed
joint algorithm strikes a balance between saving resources and
temporality. Extensive test cases were run to evaluate the joint
algorithm. The evaluation results demonstrate that, compared
to existing algorithms, the proposed joint algorithm improves
schedulability by up to 50% and increases a small number of
packets.

The rest of this paper is organized as follows: Section II
reviews two categories of related work, including message
fragmentation and real-time scheduling algorithms. Section III
details the system model and problem. Section IV formulates

the problem as an OMT specification. Section V proposes a
heuristic algorithm to improve scalability of our algorithms.
Section VI evaluates the proposed algorithms based on exten-
sive test cases. Section VII concludes the paper.

II. RELATED WORK

Much research has been proposed to improve the real-time
performance of industrial networks, e.g., real-time scheduling
[9], resource allocation [10] and data recovery [11]. In this
paper, we only focus on the real-time scheduling problem
of industrial TSNs. The work in [5] formulates the basic
scheduling problem of TSNs as a specification, and then uses
an off-the-shelf solver to calculate schedules. Then, the work
in [12] introduces the capacity limitation of TSN switches into
the basic problem so that the proposed scheduling algorithms
can be adopted in actual systems. Based on the above work,
the work in [13] proposes a loose scheduling algorithm to
transmit massive data packets using limited switch resources.
In addition to the classical scheduling problem, some extended
problems have been considered. The work in [14] proposes
an incremental scheduling algorithm to handle dynamic data
flows. The work in [15] focuses on the runtime reconfiguration
of TSNs and designs a heuristic algorithm to minimize the
impact of reconfiguring switches on existing data flows. The
work in [16] proposes a joint routing and scheduling algorith-
m to guarantee the real-time performance of time-triggered
communications and reduce the end-to-end delays of audio-
video-bridging (AVB) communications. The work in [17] also
focuses on the joint problem of routing and scheduling and
evaluates extensive test cases to explore the practical limita-
tions of the integer linear programming for TSNs. The work
in [18] evaluates asynchronous scheduling algorithms in TSNs
and demonstrates that asynchronous scheduling algorithms are
suitable for sporadic communications. The work in [19] ana-
lyzes the worst-case delays of AVB communications based on
network calculus, and then the real-time performance of AVB
communications can be precisely assessed. No-wait scheduling
can significantly improve system efficiency and has been
widely researched in many industrial systems, e.g. energy-
efficient production planning systems [20], metal-processing
systems [21] and flexible manufacturing systems [22]. In [8],
no-wait scheduling is introduced into TSNs. However, the
objective of the above work is to minimize the total length
of generated schedules. In this paper, communications have
different real-time requirements, and the above work cannot
be adopted.

Message fragmentation is a widely used network technol-
ogy. In Ethernet networks, to reduce the message response
time, the work in [23], [24] optimizes and re-configures the
maximum transmission unit size. The work in [25] designs a
middleware for Ethernet networks to fragment large objects so
that the worst-case delay of object-oriented transmissions can
be reduced. The work in [26] evaluates four fragmentation
methods based on Ethernet networks. In wireless local area
networks, the work in [27], [28] designs novel fragmentation
algorithms to improve the throughput of streaming videos. In
the 6LoWPAN protocol, the work in [29], [30] demonstrates

SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR JOURNALS 3

that packet fragmentation is beneficial to energy consumption,
throughput, and end-to-end delay. In delay tolerant networks,
the work in [31] fragments large data items to multiple routing
paths such that routing performance can be improved. In
community antenna television networks, the work in [32] con-
siders fragmentation and scheduling together. It first schedules
real-time packets and then fragments best-effort packets to
make them suitable for the free slots between successive real-
time packets. In TTEthernet networks, a similar method is
proposed to fragment event-triggered messages to make them
schedulable in idle time intervals [33]. However, the above
work cannot be applied to the multi-hop no-wait scheduling
problem that is addressed in this paper, and there is no
work to consider the effect of message fragmentation on no-
wait scheduling. Therefore, in this paper, this effect will be
analyzed, and joint algorithms will be proposed to improve
network performance.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we will detail our system model and
problem. The symbols used in this paper are summarized in
Appendix.

A TSN is characterized by a two-tuple < N,L >. The node
set N = {n1, n2, ...} includes TSN switches with multiple
ports and end systems with only one port. The element li,j
in the link set L denotes a cable between nodes ni and nj .
TSN switches form a mesh topology, and then end systems
are connected to the TSN switches, as shown in Fig. 2. All
ports and cables are full-duplex.

n1 n4

n5 n6
n2 n3

4-port switch

end systeml4,5 l4,6

l5,6l2,5 l3,6

l1,4

Fig. 2: A time sensitive network

Switch

engine

Port A

(ingress)

Queue 0

Queue 1

Queue 7

Gate

Gate

Gate

Port A

(egress)... ...

Port B

(egress)
... ...

...

Schedule

table

Time 1, Port A: 1000 0000

Time 2, Port A: 0100 0000

Time 3, Port B: 0011 1111...

Port B

(ingress)

...
Fig. 3: Architecture of a TSN switch

In TSN switches, each egress port connects multiple queues,
and each queue has a gate that can accurately control the
sending of packets. Each TSN switch has a schedule table
that records the precise times to open and close the gates.
For example, as shown in Fig. 3, at time 1, the table entry
that controls port A: queue 0 is opened, and the other queues

are closed. The queue with a smaller ID has lower priority.
When more than one gate is opening, the packet buffered in the
higher-priority queue can occupy the egress port. As described
in the IEEE 802.1bQu standard, the packet in the higher-
priority queue is allowed to interrupt the process of sending
the packet in the lower-priority queue, and the interrupted
packet will be re-assembled in the next switch. In no-wait
scheduling, deterministic packets are assigned to the highest-
priority queue, and the queue is always opened such that
the packets will not be blocked. Although blocking packets
may reduce conflicts and improve schedulability, our work
still adopts no-wait scheduling for two reasons. First, no-wait
scheduling is not limited by the size of the schedule table. In
switch chips, the size of the schedule table is limited and fixed.
Thus, switches support a limited number of gate operations.
Since no-wait scheduling algorithms do not operate gates, they
do not use the schedule table and do not need to consider
the table size constraint. Second, under no-wait scheduling,
there is no schedule dissemination overhead. In a traditional
network, a centralized scheduler disseminates the generated
schedules to the corresponding network devices. However, un-
der no-wait scheduling, switches forward the received packets
immediately and do not need schedule information, so there
is no schedule dissemination overhead. We ignore the other
details of TSN switches since they have nothing to do with
our proposed algorithms. Earlier works [13], [34] can help
readers understand TSN switches in details.

Transmitting methods are designed herein only for deter-
ministic flows. Best-effort flows are delivered by the classical
best-effort services. In the following, if no specific description
is given, flows refer to deterministic flows. A flow in the
flow set F is characterized by a four-tuple < pi, di, si,Πi >,
which denotes the period, relative deadline, message size,
and routing path, respectively. Flow fi generates a message
of si bytes periodically with a period pi, and its relative
deadline di is not greater than its period pi. It is assumed
that all flows generate their first messages at time 0. The
jth message of flow fi, called message mi,j , is generated at
time j × pi, and its absolute deadline is j × pi + di. The
time interval [j × pi, j × pi + di) is called its active interval.
Only determining how to transmit data in a hyperperiod H
that is defined as the least common multiple of all periods,
i.e., H = LCM{p1, p2, ...}, is considered here, after the
first hyperperiod, the subsequent hyperperiods are periodically
repeated. The transmission time of a packet with x bytes
is equal to x

v , where v denotes the transmission speed. The
routing path Πi is a link set, and Πi ⊆ L. A path is from an
end system to another end system. Hence, the number of hops,
denoted ri and ri = |Πi|, is not less than 2. Since routing is
already well-studied, in the proposed model all routing paths
are the shortest and generated based on existing algorithms,
e.g., [35], [36].

From Fig. 1, it can be seen that message fragmentation
based on the fixed MSS is not suitable for improving real-
time performance. To address this problem, first, the sizes of
deterministic packets are changed based on the requirements
of no-wait scheduling, and then the packets are injected at a
specified time that is determined by the proposed real-time

4 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. X, NO. X, X X

scheduling algorithm. However, the number of deterministic
packets significantly affects network performance because the
fragmented deterministic packets not only introduce extra
packet headers but also interrupt best-effort packets. Therefore,
given a network and a flow set, our proposed joint algorithm
of message fragmentation and scheduling is to minimize the
number of packets such that the following two requirements
can be satisfied.

• Real-time requirement: All messages must be delivered
to destinations before their absolute deadlines.

• No-conflict requirement: A unidirectional link cannot
serve more than one packet at the same time.

A flow set is called schedulable if it has a feasible schedule
that meets all the requirements. A solution is called optimal
if there are no other solutions with better objective values.
When only linear networks are considered, and messages are
too small to be fragmented, our problem is the same as the
scheduling problem studied in [37]. Since the problem in [37]
is NP-hard, our problem is also NP-hard. Therefore, to solve
the problem, we propose two methods as shown in Fig. 4.
First, the problem is formulated as an OMT specification [38]
(in Section IV). Thus, if there exists a feasible solution, OMT
solvers can find it. However, for some complex networks, the
solvers cannot find any feasible solution in an acceptable time.
Then, to improve the scalability of our algorithms, a heuristic
algorithm is proposed (in Section V).

Specification

Our

Problem

OMT specification (Eq. (1)-(6)) + solver

Basic scheduling algorithm (Algorithm 1)

Delay analysis based on Algorithm 1

(Theorem 1, 2 and Corollary 1, 2)

Joint Algorithm (Algorithm 2 and 3)

Heuristic

algorithm

Reduce end-to-end delays

Section IV

Section V-A

Section V-B

Section V-C

Fig. 4: Overview

IV. OMT SPECIFICATION

Satisfiability modulo theories (SMT) have been widely used
to determine whether a specification is satisfiable or not [39].
An OMT is an extension of a SMT and allows finding an
optimal objective based on a SMT specification.

The inputs of the problem are network N and flow set
F . To formulate the problem, we assume that a message is
fragmented into, at most, U packets, which are denoted as
{τi,j,1, τi,j,2, ..., τi,j,U}. U is given by users. Three decision
variables wi,j,g, si,j,g and ui,j,g are introduced. wi,j,g denotes
the injection time of packet τi,j,g. The size of packet τi,j,g is
si,j,g bytes. If si,j,g = 0, τi,j,g is defined as invalid; otherwise,
it is valid. The objective of this work is to minimize the
number of valid packets. To calculate the number of valid
packets, we use ui,j,g to denote whether a packet is valid or
not. If τi,j,g is valid, i.e., si,j,g > 0, then ui,j,g = 1; otherwise,
ui,j,g = 0. Thus, the objective function is

min
∑

∀fi∈F,∀j∈[0, H
pi

),∀g∈[0,U)

ui,j,g. (1)

The minimizing problem respects the following constraints.
1) Range constraint: The ranges of the variables used in the

proposed model are the following:

∀fi ∈ F, ∀j ∈ [0,
H

pi
), ∀g ∈ [0, U),

0 ≤ si,j,g ≤ MSS, ui,j,g ∈ {0, 1},
j × pi ≤ wi,j,g ≤ j × pi + di,

wi,j,g ≤ wi,j,g+1, ui,j,g ≥ ui,j,g+1.

(2)

If the size of a packet is greater than MSS, the packet has to
be fragmented again on the IP layer. Thus, the upper bound
of the packet size is MSS. The injection time of a packet
must be between its generation time and deadline. To reduce
the search space, we specify the order of packets: the packets
are injected in increasing order of ID, and valid packets have
smaller IDs than invalid packets.

2) Size constraint: A message is fragmented into several
packets, and the sum of the size of these packets is equal to the
size of the message. For each packet, based on the definition
of ui,j,g, if the size of the packet is 0, the corresponding ui,j,g

is also 0; otherwise, it is 1. The size constraints are as follows:

∀fi ∈ F, ∀j ∈ [0,
H

pi
),

∑
∀g∈[0,U)

si,j,g = si,

∀g ∈ [0, U),((si,j,g > 0) ∧ (ui,j,g = 1))∨
((si,j,g = 0) ∧ (ui,j,g = 0)).

(3)

3) Real-time constraint: If a packet is invalid, i.e., ¬ui,j,g

is true, its real-time constraints do not need to be considered;
otherwise, its arrival time cannot be later than its deadline.
The arrival time of a packet is equal to the injection time plus
the transmission time (si,j,g+e

v × ri), where e is the size of a
packet header. Thus, the real-time constraints are as follows:

∀fi ∈ F, ∀j ∈ [0,
H

pi
), ∀g ∈ [0, U),

¬ui,j,g ∨ (wi,j,g +
si,j,g + e

v
× ri ≤ j × pi + di).

(4)

4) No-conflict constraint: For any two packets, under the
following three conditions, we do not need to consider the
conflict between them. First, the two packets are the same
packet, i.e., for τi,j,g and τx,y,z , (i = x)∧(j = y)∧(g = z) is
true. Second, not both packets are valid, i.e., ¬ui,j,g ∨¬ux,y,z

is true. Third, the two packets do not pass through the same
directed link, i.e., (la,b /∈ Πi) ∨ (la,b /∈ Πx) is true. If the
two packets do not satisfy any of the above conditions, the
time intervals when they occupy the same link cannot overlap;

SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR JOURNALS 5

otherwise, they conflict with each other. The constraints are
as follows:

∀la,b ∈ L,∀fi, fx ∈ F, ∀j ∈ [0,
H

pi
),

∀y ∈ [0,
H

px
), ∀g, z ∈ [0, U),

((i = x) ∧ (j = y) ∧ (g = z))∨
¬ui,j,g ∨ ¬ux,y,z ∨ (la,b /∈ Πi) ∨ (la,b /∈ Πx)∨

(Ax,y,z(la,b) +
sx,y,z + e

v
< Ai,j,g(la,b))∨

(Ai,j,g(la,b) +
si,j,g + e

v
< Ax,y,z(la,b)),

(5)

where Ai,j,g(la,b) denotes the time of starting to transmit the
packet on link la,b, i.e.,

Ai,j,g(la,b) = wi,j,g +
si,j,g + e

v
× (qi,a,b − 1). (6)

qi,a,b denotes that la,b is the qi,a,b-th hop in path Πi. Then,
Ai,j,g(la,b) +

si,j,g+e
v is the finish time of the packet on link

la,b.
OMT solvers can find the solution of the above specifica-

tion. However, for complex problems, the execution time of
off-the-shelf solvers is unacceptable. Therefore, in the next
section, a fast algorithm is proposed to solve the problem.

V. PROPOSED ALGORITHM

Our algorithms schedule messages based on fixed priority
scheduling [40], which is effective and has been widely used
in real-time systems. Under fixed-priority scheduling, each
message has an unique priority, and all the messages are
scheduled in decreasing order of their priorities. For easy
understanding, first, in Section V-A, we assume that priorities
and message fragmentation have been determined. Based on
the precondition, a basic fixed-priority scheduling algorithm
(Algorithm 1) can calculate the injection times for all packets.
Then, in Section V-B, based on the basic scheduling algorithm,
the worst-case delays of messages are analyzed in order to
determine what strategy can improve the real-time perfor-
mance. Finally, in Section V-C, based on the analysis, our
joint algorithm to fragment messages and schedule packets is
proposed (as shown in Algorithm 3).

A. Basic Scheduling

To find the main factors that affect transmission delay, how
packets are scheduled is presented in this section.

Algorithm 1 is used to calculate the injection time for each
packet. Each message mi,j has a priority ρi,j . If ρi,j < ρx,y,
then the scheduling algorithm calculates the injection time
wi,j,g of the packets belonging to message mi,j first. Note
that in Algorithm 1 it is assumed that all priorities ρi,j and
message fragmentation {τi,j,1, τi,j,2, ...} have been obtained.
The method of obtaining these is introduced in Section V-C.

Γ contains all of the unscheduled messages (lines 1 and
4). In each iteration (lines 2–10), Algorithm 1 calculates the
injection time of the highest-priority message in Γ until there
are no unscheduled messages. For message mi,j , the set Mi,j

Algorithm 1 Initial scheduling algorithm
Input: < N,L >, F , ∀ρi,j , ∀si,j,g, ∀ui,j,g

Output: ∀wi,j,g

1: ∀fi ∈ F, ∀j ∈ [0, H
pi
),Γ = Γ + {mi,j};

2: while Γ ̸= ∅ do
3: mi,j with the smallest ρi,j is the highest-priority mes-

sage in Γ;
4: Γ = Γ− {mi,j};
5: for each τi,j,g ∈ Mi,j do
6: for t = (j × pi) to (j × pi + di − si,j,g+e

v × ri) do
7: if NoConflict(t, τi,j,g) then
8: wi,j,g = t; break;
9: if τi,j,g is not scheduled then

10: return FAIL;
11: return ∀wi,j,g;

includes all of its valid packets. The packets in Mi,j are
assigned injection times (lines 5–8) separately. If at time
t a packet can be scheduled without conflict (the function
NoConflict() in line 7), its injection time is t (line 8). The
function NoConflict(t, τi,j,g) returns true if, when τi,j,g is
injected into the network at time t, there is no conflict between
τi,j,g and the other scheduled packets.

Then, we analyze the time complexity of Algorithm 1. Lines
4 and 8–10 take constant time. The number of iterations of the
while loop in line 2 and the for loop in lines 5 and 6 are, at
most,

∑
∀fi∈F

H
pi

, U , and pi, respectively. The time complexi-
ty of NoConflict() is O(|N |). Line 1 is less complex than the
other lines and is ignored. Therefore, the time complexity of
Algorithm 1 is determined by lines 2, 5, 6 and NoConflict(),
i.e., O(

∑
∀fi∈F

H
pi

×U × pi×|N |) = O(|F |×H ×U ×|N |),
where U is given by users.

B. Delay Analysis

The end-to-end delay of a message is defined as the time
duration between its generation time and its received time. In
the following, analyzing the end-to-end delay of the message
mi,j is considered. Based on Algorithm 1, it is known that the
messages in the conflict set Ω(mi,j) (Definition 1) determine
the delay of mi,j . When all the messages of Ω(mi,j) are
transmitted in the active interval of mi,j and before the trans-
missions of mi,j , the worst-case delay of mi,j occurs. S(mi,j)
is used to denote the packets that belong to the messages
of Ω(mi,j), and S(mi,j) = {τa,b,g|∀τa,b,g ∈ Ma,b, ∀ma,b ∈
Ω(mi,j)}.

Definition 1. Ω(mi,j) includes all of the messages ma,b that
satisfy the following conditions:

• ma,b has a higher priority than mi,j , i.e., ρa,b < ρi,j .
• ma,b and mi,j use the same links, i.e., Πa ∩Πi ̸= ∅.
• the active intervals of ma,b and mi,j overlap each other,

i.e., [b× pa, b× pa + da) ∩ [j × pi, j × pi + di) ̸= ∅.

Based on Definition 1, it is known that the higher-priority
messages in Ω(mi,j) pass through the links of Πi, but maybe
not all of them. However, as long as one of the hops of mi,j

is delayed by the higher-priority messages, the entire mi,j

6 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. X, NO. X, X X

is delayed. This is the same as transmitting higher-priority
messages over the entire path. Hence, to bound the worst
case, all of the higher-priority messages are extended to the
entire path Πi, i.e., when the delay of mi,j is considered,
the routing path of a higher-priority message ma,b is also Πi.
This path extension does not result in an overestimation of
the worst case or an underestimation of the conflicts from the
higher-priority messages (as shown in Theorem 1). Intuitively,
changing the path will cause more delay, or some conflicts
may be neglected. However, in Theorem 1, we proved that
the above situations do not exist.

Theorem 1. In the proposed model, the path extension for the
messages in set Ω(mi,j) does not exacerbate the worst-case
delay and does not lose the conflicts from the higher-priority
messages.

Proof. First, the worst case is discussed. The path extension
does not allow messages to be transmitted in parallel since
all of them occupy the same links. Owing to the conflicts
introduced by other messages, when the delay of mi,j is
analyzed, the start times of the higher-priority messages in
Ω(mi,j) are unknown and can be any time. Thus, even though
the paths are not extended, it is possible that the transmission
times of the messages in Ω(mi,j) do not overlap each other,
i.e., they are serial. Therefore, the path extension does not
exacerbate the worst case.

l1

l2

l3

l4

Ȇi

... ...

lx1

lx2

(sa,b+e)/v

(a) Path extension

lxy
...

lxy-1

Time t

(b) Assumption 1

lxy
...

lxy-1

(c) Assumption 2

Fig. 5: Illustration of higher-priority message ma,b

Then, the conflicts from the higher-priority message ma,b

are discussed. It is assumed that Πi = {l1, ..., lri}, and Πi ∩
Πa = {lx1 , lx2 , ..., lxφ} (1 ≤ x1 < x2 < ... < xφ ≤ ri).
After extending the path, the transmissions of ma,b are shown
in Fig. 5(a). To simplify the description, a message includes
only one packet. If a message includes multiple packets, our
proof is still available. It is assumed, to the contrary, that the
extended path leads to reducing the conflicts, i.e., part of the
original transmissions of ma,b that cannot be covered by the
extended transmissions introduces more conflicts. When there
exists only one link lx1

in Πi∩Πa, only one transmission must
be covered by the extended transmission since the link is in
the extended path and the message size is unchanged. When
multiple links are in Πi ∩ Πa, the transmission on lx1 can
be covered by the extended transmissions. It is assumed that
the transmission on lxy (1 < y ≤ φ) is the first transmission
that cannot be covered (as shown in Figs. 5(b) and (c)). Note
that the proposed model adopts the shortest routing paths. The
number of the hops between lxy−1 and lxy in Πa is the same
as that in Πi, i.e., xy − xy−1 − 1. Then, the start time of the
transmission on lxy is t + (xy − xy−1 − 1) × sa,b+e

v , where

t is the end time of the transmission on lxy−1 . This time is
equal to the start time of the transmission on the extended
path, which contradicts our assumption. Therefore, our path
extension does not underestimate the conflicts from higher-
priority messages.

A packet set S⃗(mi,j) is used to denote the transmitting order
of packets. Set S⃗(mi,j) includes two parts: the ordered packets
of S(mi,j) denoted by {τ1, τ2, ..., τσ}, where σ = |S(mi,j)|,
and the packets of mi,j denoted by {τσ+1, ..., τσ+ς}, where
ς = |Mi,j |. For any two packets τk and τk+1, τk is transmitted
before τk+1. Then, the worst case delay of mi,j can be
calculated based on Theorem 2.

Theorem 2. The generation time of mi,j is set to time 0, and
the worst-case delay of mi,j is equal to the relative finish time
of the last packet τσ+ς bounded by a recursive function

Delay(mi,j) = Finish(τσ+ς)

= Finish(τσ+ς−1) + δ(τσ+ς),
(7)

where
Finish(τ1) = ri ×

s1 + e

v
(8)

and

δ(τk) =



sk+e
v + (sk+e

v − ε) if k ≤ σ and sk ≤ sk−1,

ri × sk+e
v − (ri − 1)× sk−1+e

v + (sk−1+e
v − ε)

if k ≤ σ and sk > sk−1,
sk+e
v if k > σ and sk ≤ sk−1,

ri × sk+e
v − (ri − 1)× sk−1+e

v
if k > σ and sk > sk−1.

(9)

Proof. The finish time of a packet is equal to the finish time
of its previous packet plus its own delay δ.

First, the calculation in the subset {τ1, ..., τσ} is explained.
For the first packet τ1, its finish time is equal to its transmis-
sion time (Eq. (8)). Then, for packet τk (2 ≤ k ≤ σ), the
following two conditions correspond to the first two lines of
δ(τk).

Condition 1: k ≤ σ and sk ≤ sk−1. If there is no other
conflict outside Πi, τk should be transmitted after τk−1 in
succession (as shown in Fig. 6(a)). However, some external
factors, such as the path outside Πi and the unknown relation-
ship between the generation time of τk and transmission time
of τk−1, may make τk more delayed. This additional delay is
called a gap (as shown in Fig. 6(b)). When the gap length is
less than sk+e

v , the time duration of τk occupying l2 overlaps
the time duration of τk−1 occupying l3. Thus, between τk and
τk−1, no packet can be transmitted continuously on l2 and l3.
The gap can only be idle. In the worst case, the gap length is
sk+e
v − ε, where ε approaches 0. If the gap length is greater

sk+e
v − ε, then l2 and l3 can be used continuously, and a

subsequent packet can be inserted. Although it is possible that
due to the delays introduced by external factors the subsequent
packets in S⃗(mi,j) cannot be inserted, the packets of mi,j

can be inserted because they do not have the path outside Πi.
Therefore, the delay of δ(τk) is its transmission delay plus the
worst-case gap.

SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR JOURNALS 7

ʏk-1

Finish(ʏk-1)

(sk+e)/v

time

link

ʏk
Ȇi

(a) Best case

ʏk-1

gap=(sk+e)/v-ɸ

Finish(ʏk-1)

(sk+e)/v

time

link

ʏk

?

Ȇi
l1
l2
l3

overlap

(b) Worst case

Fig. 6: Illustration of Condition 1

Condition 2: k ≤ σ and sk > sk−1. If the two packets can
be transmitted in succession, the finish time of τk should be
Finish(τk−1) + ri × sk+e

v − (ri − 1)× sk−1+e
v (as shown in

Fig. 7(a)). However, due to unknown conflict, there may be
a gap sk−1+e

v − ε between the two packets (as shown in Fig.
7(b)). Hence, the finish time of τk is

Finish(τk−1) + ri ×
sk + e

v
− (ri − 1)× sk−1 + e

v

+(
sk−1 + e

v
− ε).

ʏk

Finish(ʏk-1)

(Pi-1) ·(sk-1+e)/v

time

link

Ȇi

ʏk-1

Pi ·(sk+e)/v

(a) Best case

ʏk

Finish(ʏk-1)

(Pi-1) ·(sk-1+e)/v

time

link

Ȇi

ʏk-1

Pi ·(sk+e)/vgap=(sk-1+e)/v-ɸ

(b) Worst case

Fig. 7: Illustration of Condition 2

Then, for the packets of mi,j , since all of their conflicts
have been included in S⃗(mi,j), no unknown conflict results
in gaps. Thus, in Conditions 3 and 4, δk does not contain gap
delays, and the others are the same as Conditions 1 and 2.

In Theorem 2, the impact of fragmentation and scheduling
on the worst-case delay is formulated. Based on the theorem,
we can prove Corollary 1 and 2. Then, the worst-case delay
can be reduced by constructing a proper solution based on the
two corollaries.

Corollary 1. When the packets of S⃗(mi,j) are in a mono-
tonic non-increasing order of sizes, the minimum value of
Delay(mi,j) can be obtained as follows:

Delay(mi,j) = (ri − 2)× smax + e

v
+

2×
∑

∀τk∈S(mi,j)

sk + e

v
+

∑
∀τk∈Mi,j

sk + e

v
− ε,

(10)

where smax is the maximum size in S⃗(mi,j).

Proof. First, we discuss S(mi,j) and Mi,j , respectively, and
then consider the relationship between them.

For S(mi,j), the first two conditions of Eq. (9) are rewritten
as follows.

δ(τk) = 2
sk + e

v
− ε+


0 if k ≤ σ and sk ≤ sk−1,

(ri − 2)× (sk+e
v − sk−1+e

v)
if k ≤ σ and sk > sk−1.

(11)
Condition 2 is not less than zero because ri ≥ 2 and sk >
sk−1. Therefore, when all packets satisfy Condition 1, i.e., the
packets are transmitted in a monotonic non-increasing order
of sizes, the value of Finish(τσ) is the minimum as follows

Finish(τσ) = Finish(τ1) +
∑

∀τk∈S(mi,j)−{s1}

2
sk + e

v
− ε.

(12)
For Mi,j , when all of its packets are transmitted without

gaps, the minimum delay occurs, i.e.,
∑

∀τk∈Mi,j

sk+e
v . This

is the same as Condition 3 of Eq. (9) in which the packets are
in a monotonic non-increasing order of sizes.

Then, we consider the relationship between τσ (the last
packet of S(mi,j)) and τσ+1 (the first packet of Mi,j).

If sσ+1 ≤ sσ, then

Delaysσ+1≤sσ (mi,j) = Finish(τσ) +
∑

∀τk∈Mi,j

sk + e

v

= (ri − 2)× s1 + e

v
+ 2×

∑
∀τk∈S(mi,j)

sk + e

v

+
∑

∀τk∈Mi,j

sk + e

v
− ε.

(13)
If sσ+1 > sσ, then

Delaysσ+1>sσ (mi,j) = Finish(τσ) + ri ×
sσ+1 + e

v

− (ri − 1)× sσ + e

v
+

∑
∀τk∈Mi,j−{τσ+1}

sk + e

v

= Finish(τσ) +
∑

∀τk∈Mi,j

sk + e

v

+ (ri − 1)× sσ+1 + e

v
− (ri − 1)× sσ + e

v

= Delaysσ+1≤sσ (mi,j) + (ri − 1)× sσ+1 + e

v

− (ri − 1)× sσ + e

v
.

(14)

Hence, Delaysσ+1≤sσ (mi,j) < Delaysσ+1>sσ (mi,j) since
(ri − 1)× sσ+1+e

v > (ri − 1)× sσ+e
v . Therefore, when all the

packets are in a monotonic non-increasing order of sizes, Eq.
(13) can be used to calculate the minimum delay, where s1
denotes the maximum size.

Corollary 2. Given a fixed number of packets, the value of
Delay(mi,j) can be further decreased by minimizing smax.

Proof. For the right-hand side of Eq. (10), the fourth term
approaches zero and can be ignored. The second term is
rewritten as

2

v
×

∑
∀ma,b∈Ω(mi,j)

(sa,b + |Ma,b| × e).

8 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. X, NO. X, X X

Since |Ma,b| is given, the second term is a fixed value.
Similarly, the third term is also a fixed value. Therefore, only
smax in the first term can be reduced to decrease the value of
Delay(mi,j).

C. Joint Algorithm

The proposed joint algorithm is based on Corollary 1 and
2. Packets are scheduled in non-increasing order of their
sizes as described in Corollary 1. Thus, only when messages
cannot be scheduled, the size of packets is reduced to improve
parallelism, and the number of packets is increased. This
also conforms to our objective of minimizing the number of
packets (Eq. (1)). Then, messages are fragmented into packets
of s̄ bytes, where s̄ is a variable and corresponds to smax of
Corollary 1. If message mi,j is unschedulable, the schedules
of S(mi,j) are rolled back, and s̄ is reduced such that the delay
can be decreased as described in Corollary 2. In our heuristic
algorithms, we do not need to consider invalid packets, which
are only used in the OMT specification.

If the last packet of a message is less than s̄ bytes, it is
enlarged to s̄ bytes to satisfy Corollary 1. Intuitively, enlarging
packets will increase delay. However, if the packet is not
enlarged, it may introduce more delay to the subsequent
packets. For example, s′ bytes are padded into a packet of
sk bytes. Then, based on Eq. (9), the delay of packet sk+1 is

D = Finish(τk−1) + 2× sk + s′ + e

v
− ε+

sk+1 + e

v

= B + 2× s′

v
,

(15)
where

B = Finish(τk−1) + 2× sk + e

v
− ε+

sk+1 + e

v
. (16)

If the packet is not enlarged, the delay is

D′ =Finish(τk−1) + 2× sk + e

v
− ε

+ ri ×
sk+1 + e

v
− (ri − 1)× sk + e

v

=B + (ri − 1)× sk+1 − sk
v

.

(17)

The upper bounds of s′ and sk+1− sk are both s̄. Then, D <
B+2× s̄

v , and D′ < B+(ri−1)× s̄
v . The upper bound of D is

fixed, while D′ increases with path length ri. Therefore, when
a path includes more than three hops, enlarging the packet to
s̄ can reduce the delay of the subsequent packets. As shown
in Fig. 8, when τk is enlarged, the delay of τk+1 is reduced.
In Section VI, our evaluations also demonstrate this property
(shown as ME+EN and JA-EN in Figs. 11-15).

The proposed joint algorithm is shown in Algorithm 3. First,
function PriorityAssignment() (Algorithm 2) is invoked to
assign priorities. PriorityAssignment() is an extension of
the classical priority assignment in [41]. The classical priority
assignment traverses priorities from lowest to highest (line
2) and assigns a priority to a task if the task satisfies the
following condition: when all other unassigned tasks have
higher priorities than the task, the delay of the task is less
than its deadline (lines 3–6). Under this assignment policy,

ʏk-1 ʏk ʏk+1

enlarged ʏk

reduced delay

Original packets

Enlarging packets

Fig. 8: Enlarging τk to reduce the delay of τk+1

Algorithm 2 PriorityAssignment(F)

Input: F
Output: Ω⃗

1: ∀fi ∈ F, ∀j ∈ [0, H
pi
),Γ = Γ + {mi,j};

2: for each ρ =
∑

∀fi∈F
H
pi

to 1 do
3: for each mi,j ∈ Γ do
4: assume that except mi,j , all of the others in Γ have

higher priorities than mi,j ;
5: if Delay′(mi,j) ≤ j × pi + di then
6: ρi,j = ρ; Γ = Γ− {mi,j}; break;
7: else
8: χi,j = Delay′(mi,j)− (j × pi + di);
9: if no message is assigned ρ then

10: assign ρ to the message with the minimum χi,j ;
11: Γ = Γ− {mi,j};
12: store messages in decreasing order of priority in set Ω⃗;
13: return Ω⃗;

the initial order of all messages does not affect schedulability,
which has been proved in [42], [41]. The classical priority
assignment can reach an optimal solution only if the delay
is exact. Our analyzed delay is the upper bound of the actual
delay. Therefore, if the analyzed message delay is less than the
deadline, then the assignment policy must make the message
schedulable.

The prerequisite of calculating Delay() is the known mes-
sage fragmentation. However, before PriorityAssignment(),
message fragmentation is not determined. Thus, Delay() is
changed as follows:

Delay′(mi,j) = (ri − 2)× MSS + e

v

+
2

v
×

∑
∀ma,b∈Ω(mi,j)

(sa,b + ⌈sa,b
λ

⌉ × e)

+
1

v
× (si,j + ⌈si,j

λ
⌉ × e)− ε,

(18)

where λ is the minimum packet size and given by users.
Delay′() is the upper bound of Delay() because MSS and
⌈ sa,b

λ ⌉ is the upper bound of smax and |Ma,b|, respectively.
Thus, if Delay′() is less than the deadline, the current priority
ρ can make message mi,j schedulable (lines 4–6); otherwise,
the deviation, denoted as χi,j , between delay and deadline
is calculated (lines 7–8). Then, if the current priority is not
assigned to any message, it is assigned to the message with the
minimum χi,j (lines 7–11) because the message is most likely
schedulable at the current priority level. Algorithm 2 returns

SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR JOURNALS 9

a message set Ω⃗ that includes all of the messages sorted in
decreasing order of priorities (lines 12–13).

Lines 4, 6, 9, 11 and 13 take constant time. The number of
iterations of the for loop in lines 2 and 3 are

∑
∀fi∈F

H
pi

. In
Delay′() and Delay(), the running time of the summations
are

∑
∀fi∈F

H
pi

and
∑

∀fi∈F
H
pi

×U , respectively. In addition,
the time complexities of lines 1, 10 and 12 are O(

∑
∀fi∈F

H
pi
),

O(|F |), and O(n log n), respectively. However, they are less
complex than the other lines and are ignored. Therefore, the
time complexity of this function is determined by lines 2, 3
and Delay(), i.e., O(M3 ×U), where M is the total number
of messages, and M =

∑
∀fi∈F

H
pi

.

Algorithm 3 Joint algorithm
Input: F , ∆
Output: ∀Mi,j , ∀wi,j,g

1: Ω⃗ = PriorityAssignment(F);
2: s̄ = MSS; k = 1;
3: while k ≤ |Ω⃗| do
4: fragment the k-th message, denoted mi,j , into multiple

packets of s̄ bytes;
5: for each τi,j,g ∈ Mi,j do
6: for t = (j × pi) to (j × pi + di − si,j,g+e

v × ri) do
7: if NoConflict(t, τi,j,g) then
8: wi,j,g = t; break;
9: if ∃τi,j,g ∈ Mi,j is not scheduled then

10: k = the smallest ID in Ω(mi,j);
11: ∀g ∈ [k, |Ω⃗|], clear the injection times of the gth

message; //schedules roll back
12: s̄− = ∆;
13: if s̄ < λ then
14: return FAIL;
15: else
16: k ++;
17: return ∀Mi,j , ∀wi,j,g;

Then, Algorithm 3 fragments and schedules messages in the
order they are in set Ω⃗ (lines 3–16). Messages are fragmented
into packets of s̄ bytes (line 4), and the range of s̄ is from
MSS to λ (lines 2 and 12–14). If a packet cannot be scheduled
under the current s̄ (line 9), s̄ is reduced by a given step
value ∆ (line 12), and the messages that directly effect the
packet are re-fragmented and re-scheduled (lines 10–11). The
process of generating schedules (lines 5–8) is the same as that
in Algorithm 1.

Owing to the roll-back operation (line 11), the time com-
plexity of Algorithm 3 is pseudo-polynomial. The number of
rollbacks is up to MSS

∆ , and the time complexity of lines
3–7 has been calculated in Algorithm 1. Therefore, the time
complexity of Algorithm 3 is O(|F | ×H ×U × |N | × MSS

∆),
where U and ∆ are given by users.

VI. EVALUATION

In this section, we evaluate the proposed algorithms based
on extensive test cases. Three metrics are used in our eval-
uation: (1) schedulable ratio is the percentage of test cases
for which an algorithm can find a feasible solution; (2) the

TABLE I: parameters

n Number of network nodes
f Number of flows
p Period range
s Message size range
∆ Step value to reduce packet size

number of packets is our objective as shown in Eq. (1); and
(3) execution time is the time required to generate a feasible
solution.

The proposed joint algorithm (JA) and OMT-based method
are compared with the following five methods: ME, ME+AD,
ME+EN, JA-EN and BL.

• ME adopts the traditional Ethernet fragmentation and the
earliest deadline first (EDF) scheduling algorithm [40].

• ME+AD is an extension of ME. If ME cannot schedule
a test case under the initial MSS, ME+AD decreases the
MSS by the same parameter ∆ as JA and re-schedules
the test case. Repeat this process until the test case can
be scheduled.

• ME+EN is also an extension of ME. The only difference
between ME+EN and ME is that ME+EN enlarges the
last packets of messages, while ME does not.

• JA-EN is the same as JA except that it does not enlarge
the last packets.

• BL is a baseline for comparisons. To illustrate the effi-
ciency of JA, an optimal result is needed. However, in
an acceptable time, off-the-shelf solvers can only find
optimal results for simple problems. Thus, when optimal
results cannot be found, an approximately optimal result
is needed, which is BL in our evaluations. When a
schedulable ratio is considered, BL is defined as the per-
centage of test cases that satisfy the following necessary
condition: if all port utilizations are not larger than 100%,
the test case is schedulable. When the comparison metric
is the number of packets, BL is the sum of packets that
are fragmented by the traditional Ethernet fragmentation.
Thus, BL is better than or equal to the optimal result. If
the proposed algorithm is close to BL, it must be close
to the optimal results.

All algorithms are written in C and run on a Windows machine
with a 2.5-GHz CPU and 8 GB of memory.

All test cases are generated based on the parameters shown
in Table I. Each test case includes n

2 switches and n
2 end

systems. Each switch has 4 ports, one of which is connected
to an end system, and the remaining ports can be connected
to other switches. The switch-end system pairs are randomly
located on a two-dimensional coordinate system. Then, the
switches are traversed in increasing order of ID. For each
switch, the free ports are connected to the nearest switches
that still have free ports. To illustrate the universality of our
algorithms, we do not limit the network topology. There are f
flows. The flows randomly select their source and destination
end systems. Routing paths are generated using the Dijkstra
algorithm. To restrict the length of the hyperperiod, we adopt
harmonic periods. Each period is a random number that is in
the period range p and conforms to the expression 400µs×2n,

10 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. X, NO. X, X X

where n is a non-negative integer. Message sizes are random
numbers in the message size range s. The deadline of a flow is
also a random number in the range [pi

2 , pi]. The transmission
speed v = 31 bytes/µs is measured in our simple prototype
network such that the logical time of test cases can be mapped
to the physical time. In the following comparisons, these
parameters are changed and extensive test cases are generated
to evaluate the efficiency and universality of the proposed
algorithm. In Section VI-A, we compare OMT with JA, ME
and BL. Then, due to the long execution time of the OMT
solver, in Section VI-B, except OMT, the other algorithms are
fully evaluated.

A. Evaluations with OMT

The Microsoft solver Z3 [43] is invoked to solve the OMT
specification. The time limit of Z3 is set as 600s. To make test
cases solvable, n = 4, f = 4, and p = {400µs, 800µs} are set.
The other parameters are shown in Fig. 9. For each parameter
setting, 200 test cases are generated. Fig. 9 (a) and (b) show
schedulable ratios and the number of packets normalized with
BL, respectively. Since ME adopts traditional fragmentation,
it does not introduce extra packets. However, the traditional
algorithm has the worst schedulable ratio. OMT is not better
than JA because Z3 cannot find optimal results for some test
cases within the time limit. The schedulable ratio of JA is
close to BL. This illustrates that JA can significantly improve
the schedulability. Other than OMT, the other algorithms can
finish execution within 10 ms. The execution time of OMT is
shown in Fig. 10. Most of the test cases can be solved by Z3
in 300 s. Once the execution time exceeds 300 s, it is difficult
to solve these test cases in 600 s. The test cases in Fig. 10 (b)
have short execution times because they include the minimum
number of packets, i.e., the minimum number of variables.
Therefore, if a problem includes a small number of variables,
OMT can be adopted to find optimal results; otherwise, JA is
the best choice.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s=[1461,

2920],

ѐсϭϰϲ

s=[1461,

2920],

ѐсϮϵϮ

s=[1461,

5840],

ѐсϭϰϲ

sc
h

e
d

u
la

b
le

 r
a

ti
o

JA ME OMT BL

(a) Schedulable ratio

0.8

1

1.2

1.4

1.6

1.8

s=[1461,

2920],

ѐсϭϰϲ

s=[1461,

2920],

ѐсϮϵϮ

s=[1461,

5840],

ѐсϮϵϮ

n
u

m
b

e
r

o
f

p
a

ck
e

ts

JA ME OMT BL

(b) Number of packets

Fig. 9: Evaluations of OMT

B. Evaluations without OMT

To fully evaluate the proposed algorithm, in the following,
each parameter is changed over a larger range to generate test
cases. The basic setting is shown in the caption of Fig. 11.
Then, Figs. 12, 13, 14, and 15 change the period parameter,

0

100

200

300

400

500

600

0 100 200

e
xe

cu
ti

o
m

 t
im

e
 (

s)

test cases

(a) 1461 ≤ s ≤
2920,∆ = 146

0

100

200

300

400

500

600

0 100 200

e
xe

cu
ti

o
m

 t
im

e
 (

s)

test cases

(b) 1461 ≤ s ≤
2920,∆ = 292

0

100

200

300

400

500

600

0 100 200

e
xe

cu
ti

o
m

 t
im

e
 (

s)

test cases

(c) 1461 ≤ s ≤
5840,∆ = 146

Fig. 10: Execution time of OMT

size parameter, step value, and number of flows, respectively,
to illustrate the efficiency and universality of JA. For each
parameter setting, 2000 test cases are generated.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 20 30 40 50 60

s
c
h

e
d

u
la

b
le

 r
a

ti
o

n

JA ME

BL ME+EN

ME+AD JA-EN

(a) Schedulable ratio

0

1

2

3

4

5

6

7

10 20 30 40 50 60

n
u

m
b

e
r

o
f

p
a

ck
e

ts

n

JA

BL

ME+AD

JA-EN

(b) Number of packets

Fig. 11: Comparisons under varying n, p = [800µs, 6.4ms],
s = [1461, 5480], ∆ = 146, and f = n

Fig. 11 shows the comparison with a varying the number
of network nodes. The schedulable ratio decreases as the
number of nodes increases. This is because the greater the
number of nodes, the more difficult the scheduling becomes.
ME+EN is better than ME. This is because ME makes more
resource fragmentations unusable and cannot provide a long
enough time duration to transmit no-wait packets. Fig. 11 (b)
shows the number of packets normalized with BL. ME and
ME+EN are not shown since they both adopt the traditional
fragmentation and have the same number of packets with BL.
The larger the network, the longer the routing path. Thus,
when n = 60, to make flows schedulable, smaller packets
are needed to improve the parallelism such that the delay
introduced by the long path can be reduced. Therefore, the
number of packets increases as n increases. Compared to ME,
although JA introduces more packets, it still can find feasible
solutions. This is because, in ME, different packet sizes cause
excessive resource fragmentations. ME+AD uses many small
packets to improve the parallelism. Thus, the schedulable ratio
of ME+AD is slightly better than JA, but the number of
packets of ME+AD is more than double that of JA. Therefore,
in a network, if there are sufficient resources, the smaller
MSS should be adopted to improve the real-time performance.
Compared to JA, JA-EN causes more resource fragmentations.
Hence, even though part of messages are fragmented into

SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR JOURNALS 11

smaller packets to improve the parallelism, the schedulable
ratio of JA-EN is still less than that of JA.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 20 30 40 50 60

s
c
h

e
d

u
la

b
le

 r
a

ti
o

n

JA ME

BL ME+EN

ME+AD JA-EN

(a) Schedulable ratio

0

2

4

6

8

10

12

10 20 30 40 50 60
n

u
m

b
e

r
o

f
p

a
ck

e
ts

n

JA

BL

ME+AD

JA-EN

(b) Number of packets

Fig. 12: Comparisons under varying n, p = [800µs, 12.8ms],
s = [1461, 5480], ∆ = 146, and f = n

The period range is extended to illustrate its effect on
schedulable ratios and the number of packets, as shown in
Fig. 12. Compared to Fig. 11(a), Fig. 12(a) shows higher
schedulable ratios because more time resources can be utilized
to make flows satisfy real-time constraints. Then, since the
real-time constraints are easily satisfied, messages do not need
to be fragmented into small packets to reduce the delay.
Thus, in Fig. 12(b), the number of packets of JA is less
than that in Fig. 11(b). ME+AD makes full use of the time
resources to improve the schedulability but results in too
many packets. Compared to ME+AD, JA not only guarantees
the requirements of deterministic communications but also
reserves more resources for best-effort communications.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 20 30 40 50 60

s
c
h

e
d

u
la

b
le

 r
a

ti
o

n

JA ME

BL ME+EN

ME+AD JA-EN

(a) Schedulable ratio

0

1

2

3

4

5

6

7

10 20 30 40 50 60

n
u

m
b

e
r

o
f

p
a

ck
e

ts

n

JA

BL

ME+AD

JA-EN

(b) Number of packets

Fig. 13: Comparisons under varying n, p = [800µs, 6.4ms],
s = [1461, 8760], ∆ = 146, and f = n

In Fig. 13, the message size is larger than that of other
figures. Since large messages are difficult to schedule, the
schedulable ratios in Fig. 13(a) are low. Compared to JA,
although ME+AD improves the schedulable ratio by 3%, it
consumes more than twice the resources. JA-EN is close to JA
because large messages can be fragmented into more packets
so that JA-EN searchs fesabile solutions in a larger solution
space. When n ≥ 50, no algorithm can schedule test cases,
not even BL. Therefore, in real applications, the periods and
deadlines of large messages must be extended to make them
schedulable, as illustrated in Fig. 12.

In Fig. 14, ∆ is increased. Messages cannot be fragmented
into small pieces. Both the schedulable ratio and the number

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 20 30 40 50 60

s
c
h

e
d

u
la

b
le

 r
a

ti
o

n

JA ME

BL ME+EN

ME+AD JA-EN

(a) Schedulable ratio

0

1

2

3

4

5

6

7

10 20 30 40 50 60

n
u

m
b

e
r

o
f

p
a

ck
e

ts

n

JA

BL

ME+AD

JA-EN

(b) Number of packets

Fig. 14: Comparisons under varying n, p = [800µs, 6.4ms],
s = [1461, 5480], ∆ = 438, and f = n

of packets are reduced. Other than ∆, if the other parameters
are changed, test cases are changed accordingly. Only ∆
is independent of test cases. Therefore, when given a real
network, we can adjust ∆ to trade off between the schedulable
ratio and the number of packets.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

15 20 25 30 35 40

s
c
h

e
d

u
la

b
le

 r
a

ti
o

f

JA ME

BL ME+EN

ME+AD JA-EN

(a) Schedulable ratio

0

1

2

3

4

5

6

7

15 20 25 30 35 40

n
u

m
b

e
r

o
f

p
a

ck
e

ts

f

JA BL

ME+AD JA-EN

(b) Number of packets

Fig. 15: Comparison under varying f , p = [800µs, 6.4ms],
s = [1461, 5480], ∆ = 146, and n = 20

Fig. 15 shows the comparison under varying f . As f in-
creases, the increased packets make more test cases unschedu-
lable, and thus the schedulable ratio decreases. The number of
packets increases slowly, because the test cases that contain
more packets are unschedulable, and these unschedulable test
cases are not included in the figure. When there are not many
flows, the schedulable ratio of ME+EN is significantly higher
than that of ME. Therefore, ME+EN is an efficient method
for low-load test cases.

VII. CONCLUSIONS

In this paper, to improve the real-time performance of
networked control systems, the joint problem of message
fragmentation and no-wait scheduling is explored. First, an
OMT specification is proposed and then an off-the-shelf solver
utilized to find its optimal solution. However, the OMT-based
algorithm is limited by the execution time of the off-the-shelf
solver. Then, to improve the scalability of our algorithm, a
heuristic algorithm is proposed. The algorithm constructs low-
delay fragmentation and schedules based on the message delay
analysis. Finally, extensive test cases are conducted to evaluate
the proposed algorithms. The results indicate that the proposed

12 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. X, NO. X, X X

joint algorithm outperforms existing ones. In the future, we
will implement a TSN switch based on FPGA and evaluate
our algorithms in a real TSN.

ACKNOWLEDGMENT

This work was partially supported by National Key
Research and Development Program of China (2018YF-
B1700200), National Natural Science Foundation of Chi-
na (61972389, 61903356, 61803368 and U1908212), Youth
Innovation Promotion Association of the Chinese Acade-
my of Sciences, National Science and Technology Major
Project (2017ZX02101007-004), Liaoning Provincial Natural
Science Foundation of China (2019-YQ-09, 20180520029 and
20180540114), and China Postdoctoral Science Foundation
(2019M661156).

APPENDIX A
SYMBOL

N Node set
L Link set
ni The i-th node
li,j The link between ni and nj

F Flow set
fi The i-th flow
pi Period of fi
di Relative deadline of fi
si Message size of fi
Πi Path of fi
mi,j The j-th message of fi
H Hyperperiod
v Transmission speed
ri Number of hops in path Πi

U A message is fragmented into, at most, U packets.
τi,j,g The g-th packet of mi,j

wi,j,g Injection time of τi,j,g
si,j,g Size of τi,j,g
ui,j,g If ui,j,g = 1, τi,j,g is valid.
e Size of a packet header

Ai,j,g(la,b) Time of starting to transmit τi,j,g on la,b
qi,a,b Location of la,b in Πi

ρi,j Priority of mi,j

Γ Unscheduled message set
Mi,j Valid packet set of mi,j

t Time variable
Ω(mi,j) Conflict set (Definition 1)
S(mi,j) Set of packets that belong to Ω(mi,j)

{l1, ..., lri} Links in Πi

φ Number of links in Πi ∩Πa

lxy The xy-th link in Πi ∩Πa, and y ∈ (1, φ]

S⃗(mi,j) Set of ordered packet
σ Number of packets in S(mi,j)
ς Number of packet in Mi,j

{τ1, ..., τσ+ς} Packets in S⃗(mi,j)
ε A value close to 0

smax The maximum size in S(mi,j)
s̄, s′ Size variables
λ The minimum packet size

χi,j The deviation between delay and deadline
Ω⃗ Set of sorted messages
∆ A step value used to adjust packet sizes

REFERENCES

[1] P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner, “Enabling fog
computing for industrial automation through time-sensitive networking
(TSN),” IEEE Commun. Stand. Mag., vol. 2, no. 2, pp. 55–61, Jul. 2018.

[2] J. Lee and S. Park, “Time-sensitive network (TSN) experiment in sensor-
based integrated environment for autonomous driving,” Sensors, vol. 19,
no. 5, pp. 1–11, May 2019.

[3] L. Huang, Y. Liang, Y. Zhang, Y. Wang, and Q. Wang, “Time-sensitive
network technology and its application in energy internet,” in Proc. 2019
IEEE Int. Conf. Energy Internet, 2019, pp. 211–216.

[4] J. Jiang, Y. Li, S. H. Hong, A. Xu, and K. Wang, “A time-sensitive
networking (TSN) simulation model based on OMNET++,” in Proc.
IEEE Int. Conf. Mechatronics and Automation, 2018, pp. 643–648.

[5] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, and W. Steiner, “Scheduling
real-time communication in IEEE 802.1 Qbv time sensitive networks,”
in Proc. 24th Int. Conf. Real-Time Networks and Systems, 2016, pp.
183–192.

[6] Cisco Systems, Inc. (2020) Cisco industrial ethernet 4000, 4010
and 5000 switch software configuration guide. [Online]. Available:
https://www.cisco.com

[7] N. Semiconductors. (2016) SJA1105 product data sheet. [Online].
Available: https://www.nxp.com/docs/en/data-sheet/SJA1105.pdf

[8] F. Dürr and N. G. Nayak, “No-wait packet scheduling for IEEE time-
sensitive networks (TSN),” in Proc. 24th Int. Conf. Real-Time Networks
and Systems, 2016, pp. 203–212.

[9] X. Jin, F. Kong, L. Kong, W. Liu, and P. Zeng, “Reliability and tem-
porality optimization for multiple coexisting WirelessHART networks
in industrial environments,” IEEE Trans. Ind. Elect., vol. 64, no. 8, pp.
6591–6602, 2017.

[10] J. Tang, B. Shim, and T. Q. Quek, “Service multiplexing and revenue
maximization in sliced C-RAN incorporated with URLLC and multicast
eMBB,” IEEE J. Sel. Area. Commun., vol. 37, no. 4, pp. 881–895, 2019.

[11] L. Kong, M. Xia, X.-Y. Liu, G. Chen, Y. Gu, M.-Y. Wu, and X. Liu,
“Data loss and reconstruction in wireless sensor networks,” IEEE Trans.
Parall. and Distrib. Sys., vol. 25, no. 11, pp. 2818–2828, 2013.

[12] R. S. Oliver, S. S. Craciunas, and W. Steiner, “IEEE 802.1 Qbv gate
control list synthesis using array theory encoding,” in Proc. IEEE Real-
Time and Embedded Technology and Applications Symp., 2018, pp. 13–
24.

[13] X. Jin, C. Xia, N. Guan, C. Xu, D. Li, Y. Yin, and P. Zeng, “Real-time
scheduling of massive data in time sensitive networks with a limited
number of schedule entries,” IEEE Access, vol. 8, no. 1, pp. 6751–6767,
2020.

[14] N. G. Nayak, F. Dürr, and K. Rothermel, “Incremental flow scheduling
and routing in time-sensitive software-defined networks,” IEEE Trans.
Ind. Informat., vol. 14, no. 5, pp. 2066–2075, 5 2017.

[15] M. L. Raagaard, P. Pop, M. Gutiérrez, and W. Steiner, “Runtime
reconfiguration of time-sensitive networking (TSN) schedules for fog
computing,” in Proc. 2017 IEEE Fog World Congress, 2017, pp. 1–6.

[16] V. Gavriluţ, L. Zhao, M. L. Raagaard, and P. Pop, “AVB-aware routing
and scheduling of time-triggered traffic for TSN,” IEEE Access, vol. 6,
no. 11, pp. 75 229–75 243, 2018.

[17] J. Falk, F. Dürr, and K. Rothermel, “Exploring practical limitations of
joint routing and scheduling for TSN with ILP,” in Proc. 24th Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications, 2018, pp. 136–146.

[18] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. Elbakoury, “Performance comparison of IEEE
802.1 TSN time aware shaper (TAS) and asynchronous traffic shaper
(ATS),” IEEE Access, vol. 7, no. 4, pp. 44 165–44 181, 2019.

[19] L. Zhao, P. Pop, Z. Zheng, and Q. Li, “Timing analysis of AVB traffic in
TSN networks using network calculus,” in Proc. 2018 IEEE Real-Time
and Embedded Technology and Applications Symp., 2018, pp. 25–36.

[20] I. Ferretti and L. Zavanella, “Batch energy scheduling problem with no-
wait/blocking constraints for the general flow-shop problem,” Procedia
Manufacturing, vol. 42, no. 4, pp. 273–280, 2020.

[21] F. Della Croce, A. Grosso, and F. Salassa, “Minimizing total comple-
tion time in the two-machine no-idle no-wait flow shop problem,” J.
Heuristics, vol. 19, no. 10, pp. 1–15, 2019.

[22] X. Wang, K. Xing, Y. Feng, and Y. Wu, “Scheduling of flexible
manufacturing systems subject to no-wait constraints via Petri nets and
heuristic search,” IEEE Trans. Syst., Man, and Cybern.: Syst., vol. 49,
no. 12, pp. 1–12, 2019.

[23] M. Behnam, R. Marau, and P. Pedreiras, “Analysis and optimization of
the MTU in real-time communications over switched ethernet,” in Proc.
16th Conf. Emerging Technologies and Factory Automation, 2011, pp.
1–7.

[24] M. Ashjaei, M. Behnam, L. Almeida, and T. Nolte, “MTU configuration
for real-time switched ethernet networks,” J. Syst. Architect., vol. 70,
no. 4, pp. 15–25, Apr.

SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR JOURNALS 13

[25] K.-B. Gemlau, J. Peeck, N. Sperling, P. Hertha, and R. Ernst, “A new de-
sign for data-centric ethernet communication with tight synchronization
requirements for automated vehicles,” in Proc. 45th Ann. Conf. IEEE
Industrial Electronics Society, 2019, pp. 4489–4494.

[26] N. Chaudhari, K. C. Ananthoju, and S. Isac, “Comparative analysis of
large data transfer in automotive applications using Ethernet switched
networks,” in Proc. Symp. Int. Automotive Technology, 2019.

[27] B. Shin, J. Abdullayev, and D. Lee, “An efficient MAC layer packet
fragmentation scheme with priority queuing for real-time video stream-
ing,” in Proc. IEEE 41st Conf. Local Computer Networks, 2016, pp.
69–77.

[28] J. Abdullayev, B. Shin, and D. Lee, “A dynamic packet fragmentation
extension to high throughput WLANs for real-time H264/AVC video
streaming,” in Proc. 10th Int. Conf. Future Internet, 2015, pp. 1–4.

[29] I. Suciu, X. Vilajosana, and F. Adelantado, “An analysis of packet
fragmentation impact in LPWAN,” in Proc. 2018 IEEE Wireless Com-
munications and Networking Conf., 2018, pp. 1–6.

[30] S. A. Awwad, N. K. Noordin, B. M. Ali, F. Hashim, and N. H. A. Ismail,
“6LoWPAN route-over with end-to-end fragmentation and reassembly
using cross-layer adaptive backoff exponent,” Wirel. Pers. Commun.,
vol. 98, no. 1, pp. 1029–1053, 2018.

[31] X. Bao, Y. Zhang, D. Guo, and M. Song, “An optimization model for
fragmentation-based routing in delay tolerant networks,” Science China
Information Sciences, vol. 59, no. 1.

[32] N. Naaman and R. Rom, “Packet scheduling with fragmentation,”
in Proc. 21st Ann. Joint Conf. IEEE Computer and Communications
Societies, 2002, pp. 427–436.

[33] E. Suethanuwong, “Message fragmentation of event-triggered traffic
in TTEthernet systems using the timely block method,” in Proc. Int.
Conf. Computational Techniques in Information and Communication
Technologies, 2016, pp. 450–458.

[34] N. Semiconductors. (2017) Software user manual for SJA1105TEL. [On-
line]. Available: https://www.nxp.com/docs/en/user-guide/UM10944.pdf

[35] S. M. Laursen, P. Pop, and W. Steiner, “Routing optimization of AVB
streams in TSN networks,” ACM Sigbed Review, vol. 13, no. 4, pp.
43–48, 2016.

[36] V. Gavrilut, B. Zarrin, P. Pop, and S. Samii, “Fault-tolerant topology and
routing synthesis for IEEE time-sensitive networking,” in Proc. 25th Int.
Conf. Real-Time Networks and Systems, 2017, pp. 267–276.

[37] P. Jayachandran and T. Abdelzaher, “A delay composition theorem for
real-time pipelines,” in Proc. 19th Eur. Conf. Real-Time Systems, 2007,
pp. 29–38.

[38] A. Cimatti, A. Franzen, A. Griggio, R. Sebastiani, and C. Stenico,
“Satisfiability modulo the theory of costs: foundations and applications,”
in Proc. Int. Conf. Tools and Algorithms for the Construction and
Analysis of Systems, 2010, pp. 99–113.

[39] E. B. Clark, T. A. Henzinger, H. Veith, and R. Bloem, “Satisfiability
modulo theories,” Handbook of Model Checking, pp. 305–343, 2018.

[40] J. Liu, Real-time Systems. Prentice Hall, 2000.
[41] N. C. Audsley, “On priority asignment in fixed priority scheduling,” Inf.

Process. Lett., vol. 79, no. 1, pp. 39–44, 2001.
[42] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “End-to-end delay analysis

for fixed priority scheduling in WirelessHART networks,” in Proc. 17th
IEEE Real-Time and Embedded Technology and Applications Symp.,
2011, pp. 13–22.

[43] N. Bjorner and A.-D. Phan, “vZ - maximal satisfaction with Z3,” in
Proc. 6th Int. Symp. Symbolic Computation in Software Science, 2014,
pp. 1–9.

Xi Jin (M’17) received her Ph.D. degree in com-
puter science from Northeastern University, China,
in 2013. She is currently an Associate Professor
with the Shenyang Institute of Automation, Chinese
Academy of Sciences. She is also a committee mem-
ber of the China Computer Federation Technical
Committee on Embedded Systems (CCF TCEBS).
Her research interests include industrial networks,
real-time systems, and internet of things.

Changqing Xia (M’17) received the Ph. D. degree
from Northeastern University, China in 2015. He is
currently an associate professor at Shenyang Institute
of Automation, Chinese Academy of Sciences. His
research interests include wireless sensor networks,
edge computing and real-time systems, especially
the real-time scheduling algorithms, and smart en-
ergy systems.

Nan Guan is currently an assistant professor at the
Department of Computing, The Hong Kong Poly-
technic University. He received his BE and MS from
Northeastern University, China in 2003 and 2006
respectively, and a PhD from Uppsala University,
Sweden in 2013. His research interests include real-
time embedded systems and cyber-physical systems.
He received the EDAA Outstanding Dissertation
Award in 2014, the Best Paper Award of RTSS 2009
and DATE 2013.

Peng Zeng received his Ph.D. degree from the
Shenyang Institute of Automation, Chinese Acade-
my of Sciences. He is currently a professor at the
Shenyang Institute of Automation, Chinese Acade-
my of Sciences. His research interests include indus-
trial communication and wireless sensor networks.

