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Abstract—Demand response is considered as a valuable func-
tionality of the power grid and its potential impacts continue
expanding with grid modernization. Colocation data centers
(simply called colocation) are recognized as a notably promising
resource for demand response due to their high power demand
and remarkable potential in demand management. A major
challenge of colocation demand response is the split incentive,
that is, colocation operators desire demand response for financial
compensation while tenants may not embrace demand response
due to lack of incentives. Another key challenge is caused by
renewable energy co-located with data centers. Demand response
mechanisms overlooking the uncertainty of renewable would
cause much inefficiency in terms of energy saving and economic
aspects. Existing work considers the two challenges separately
in the context of data centers. By contrast, this work jointly
addresses them and specially studies mechanism design for
colocation data centers in presence of co-located renewable.

We propose a hierarchical demand response scheme, which
is based on a new two-level market mechanism that results in
a win-win situation for both parties, i.e., tenants who choose
to reduce power demand obtain financial rewards from the
operator, while the operator receives financial compensation from
the electric power company due to its tenants’ demand reduction.
At each demand response period, the colocation operator solicits
bids (amount of energy reduction) from tenants and tenants
who choose to participate responds to the operator with their
bids. The proposed mechanism provably converges to a unique
equilibrium solution, and at the equilibrium, neither the operator
or tenants can improve their individual economic performance
by changing their own strategies. Further, we present a stochastic
optimization based algorithm, which uses predictions of the co-
located renewable to determine the colocation operator’s best
strategy. At the equilibrium, the algorithm has a provable
economic performance guarantee in terms of the prediction
error. We finally evaluate the designed mechanism via detailed
simulations and the results show the efficacy and validate the
theoretical analysis for the mechanism.

Index Terms—Demand response, data center, colocation, re-
newable, Stackelberg game, stochastic optimization

I. INTRODUCTION

Demand response programs offer financial compensation to
motivate consumers to adapt their power demand according to
power supply conditions. For example, consumers may reduce
their power loads in response to direct requests or price-peak
warning signals from electric power companies. A key vision
of the future smart grid is transiting from the paradigm of
supply-follow-demand to the one of demand-follow-supply.

Demand response is identified as the crucial functionality to
help realize this vision [1].

This work studies a particularly promising resource for
adopting demand response, which is colocation data centers
(simply called colocation afterwards). On one hand, colocation
is a favorable candidate for a demand response because it
is critical data center segment requiring tremendous energy
consumption. For example, colocation (e.g., those of Equinix)
in the US consumed more than 14.5 billion kWh in 2011,
which was about 4.8 times of the energy usage by large-
scale cloud data centers (e.g., those of Google) [2]. Further,
colocation has significant potential to allow flexible power
demand management. The potential roots from the fact that
server utilization varies a lot overtime. Actually, the average
utilization is very low, only around 10-15%, and idle servers
can take up to 60% of the peak power [2], [3]. There would be
much power saving if adapting idle servers’ operation status
accordingly, for example, turning them off. One the other
hand, it would be beneficial for colocation to participate into
a demand response program. As to colocation, the energy
cost takes up to 40% of the total cost of ownership [3],
[4]. Adjusting its power consumption accordingly will bring
significant financial compensation and thus offset the energy
cost of colocation.

There are two key challenges to unleash the potential of
colocation demand response. The first one is the split incentive,
which is that colocation operators desire demand response
while tenants hesitate about demand response. The operators’
desire results from the benefit of financial compensation
received by coloction if participating demand response. The
tenants’ hesitation stems from that existing pricing mecha-
nisms used by colocation provide no incentives and thus can
hardly motivate tenants to actively adapt their power usage
[3], [5]. This challenge roots from the fact that colocation
operators have little control over tenants’ servers. Colocation
operators (e.g., Equinix) mainly provide facilities support such
as network, power and cooling, and rent out physical space to
tenants for housing their own servers. Each tenant individually
operates their own servers. Note that the operator of an owner-
operated data center (e.g., those of Google), where servers
and facilities belong to the single owner, has full control over
them. This difference eliminates the feasibility of applying
existing work such as [6]–[12], which study demand response
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for owner-operated data centers, to the case of colocation
demand response.

The second challenge is induced by the co-located renew-
able energy, i.e., renewable co-located with a data center [13].
On one hand, colocation operators are increasingly integrating
renewable into their data centers’ power supply given the need
of sustainable development and the financial benefit due to
the lower cost of renewable (in the long run). For example,
Equinix has increased the percentage of their renewable energy
from 30% to 40% at the end of 2015 [14]. Further, thirty
percent of the power supply for overall colocation would come
from renewable sources by 2025 [15]. On the other hand,
renewable such as wind and solar power is highly intermittent
and variable. Their effective power output fluctuates and
varies a lot over time due to the dependence on the external
conditions (e.g., solar irradiation and wind speed) [16]–[18].
Both energy saving and economic performance would be much
compromised if a demand response design overlooks this
uncertainty of renewable.

Existing work addresses the above two challenges separately
in the context of data centers. For example, research efforts
including [3], [5], [19]–[22] are focused on the split incentive
for colocation data centers and propose incentive mechanisms
(i.e., pay or reward tenants) to motivate tenants to adapt their
power consumptions. Existing work such as [23]–[25] and
those surveyed in [13] is confined to renewable integration for
owner-operated data centers and presents planning, schedul-
ing, and routing approaches to accommodate the renewable’s
uncertainty. Differently, this work jointly addresses the two
challenges and studies mechanism design for colocation data
centers in presence of co-located renewable.

We propose to utilize hierarchical demand response, where
tenants interact with colocation operators while colocation
operators respond to electric power companies. Designing such
a market mechanism that well addresses the above challenges,
however, is a non-trivial task because of several difficulties
as follows. First, both colocation operators and tenants may
want to maximize their own benefits. Thus, a suitable market
design should be distributed and allows both parties to carry
out independent decision-making. Second, from an algorithmic
perspective, a well-designed mechanism should have robust
performance bound in terms of the impact of renewable
uncertainty on the market.

To address these difficulties, we design a two-level market
mechanism for colocation demand response (Fig. 1). Tenants
who reduce their power demand can obtain financial rewards
from colocation operators, while colocation operators receive
financial compensation from the electric power company due
to tenants’ demand reduction. The market mechanism has a hi-
erarchical decision-making structure. The colocation operator
leads the market by deciding the amount of demand reduction
that best responds to the requests from the electric power
company. Tenants choose to follow the operator’s actions by
independently submitting to the operator with bids that best
satisfy their own economic gains.

To demonstrate the feasibility and benefits of the proposed

market mechanism, we study and analyze it using the frame-
work of Stackelberg games [26]. Through rigorous game-
theoretic analysis, we prove that 1) the market level among
tenants converges to a unique Nash equilibrium where no
tenant can improve its economic performance by changing
only its own bid; and 2) the whole market converges to
a unique Stackelberg equilibrium where both the colocation
operator and tenants achieve the best economic gain in pres-
ence of the Nash equilibrium. Another key contribution is to
demonstrate that the impact of renewable uncertainty on the
Stackelberg equilibrium is bounded. For tenants, we show that
the uncertainty does not affect the Nash equilibrium. For the
colocation operator, to obtain good economic performance on
average, we present a stochastic optimization based algorithm
given the estimation of the likelihood of renewable. The
algorithm has a provable performance guarantee in terms of
the prediction errors, which is independent on any specific
distribution of the prediction error. To be specific, our main
contributions are summarized as follows.
• We newly study hierarchical demand response for colo-

cation data centers in presence of co-located renewable,
and specially, propose a distributed two-level market
mechanism that creates a win-win situation for colocation
operators and tenants. We further present a stochastic
optimization based algorithm to optimize economic per-
formance for the colocation at the equilibrium given the
prediction of colocated renewable.

• Using theoretical analysis, we demonstrate that 1) the
proposed market mechanism provably converges to the
equilibrium solutions; 2) the renewable’s uncertainty has
provable bounded impact on the equilibriums.

• Through extensive simulations, we show the efficacy of
the mechanism as well as validate the theoretical results
under various settings with regard to both economic and
algorithmic performance.

The rest of the paper is organized as follows. Section II pro-
vides the system model. Section III proposes the hierarchical
demand response mechanism and analyzes its performance.
Section IV presents a stochastic algorithm for incorporating
renewable and bounds its performance. Section V evaluates
the proposed mechanism. Section VI concludes the paper and
points out the future work.

II. THE SYSTEM MODEL

Fig. 1 illustrates the schematic of hierarchical demand
response, where level 1 is that the colocation operator interacts
with its tenants while level 2 is that the operator responds
to the electric power company. The scenario we consider
in this paper is that an electric power company requests
power demand reduction from a colocation during a time
period (e.g., one hour). First, the electric power company
initializes the demand response period by notifying the colo-
cation operator with the demand reduction request. Second,
the operator solicits bids from its tenants after receiving the
demand reduction request after receiving the request. To appeal
tenants to participate in reducing their power consumption, the
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Fig. 1. Two-level market design for colocation demand response. Level 2 is
that the colocation operator responds to the electric power company. Level 1
is that the operator interacts with its tenants.

operator provides a reward for each tenant who contributes to
energy reduction. Tenants decide whether to decrease their
power according to their own conditions (e.g., workload or
timing requirements). Third, the operator decides how much
power reduction is responded to the demand response signal.
Finally, according to the operator’s response, the electric power
company offers financial compensation to the operator. In the
following, we consider one demand response period and the
proposed method can be repeatedly applied to periods [5],
[27].

There are many ways that tenants can use to reduce energy,
for example, lowering the frequencies of server’s CPU [28],
or transferring work loads to other data center [11]. The best
and easy way to implement energy reduction is to turn off
idle severs [5]. The tenants who respond and save energy will
get a financial benefit from the operator. This financial benefit
is limited so tenants have to compete with one another to
maximise their own benefits. Both the operator and the tenants
make their strategies due to their own financial benefits. In the
rest of this section, we present how to model these behaviors
of the operator and tenants. Note that although these following
modeling approaches seem restricted, it is widely used in the
power market literature, e.g. [29]–[32].

Table I lists notations used in this paper.

A. Colocation Model

We assume that there are N tenants in the colocation. We
use qi to denote the quantity of electricity that tenant i ∈ [1, N ]
is willing to decrease. If tenant i decides not to respond to the
operator, qi is set to 0. The total energy reduction by all the
tenants is thus

E =

N∑
i=1

qi. (1)

Each tenant i incurs a cost Ci(qi), when he/she reduces
an amount of qi energy. We assume that function Ci(·) is
continuous, increasing, strictly convex, and with Ci(0) = 0.
This cost includes switching cost, delay cost, and management
cost [5], [33]. We uniformly model the total cost as convex

TABLE I
NOTATIONS USED IN THIS PAPER.

Notation Description
N total number of tenants
qi quantity of energy that tenant i saved
E total energy reduction of tenants
Ci(·) tenant’s cost function
p financial reward price from the operator
bi the bid submitted by tenant i
b vector of tenants’ bids
B sum of bids
B−i sum of bids except tenant i
ui utility of tenant i
Wi reward from operator
K(·) financial compensation from electric power company
Co(·) cost function of the operator
ω actual renewable generation
ω̃ predicted renewable generation
ε the prediction error of renewable generation
E[ε] mean of ε
V[ε] variance of ε
M maximum amount of renewable generation
η competitive ratio

function, because that can capture many common servers [33],
[34]. The rationale of the convexity of Ci() is as follows.
For example, consider modeling all servers of a tenant as a
M/M/n queue. The service delay has a convex relation with
the number of active servers [35]. If we consider the delay as
a cost of turning-off servers (thus energy reduction), the cost
has a convex relation with energy reduction. In practice, Ci()
can be also empirically measured by observing the system.
According to principle of diminishing returns, as the unite
amount of energy tenants save increase, the related cost will
increase more and more fast [36], [37]. In reality, when tenants
turn off the server, the assigning jobs to each working server
increase. At this time, if tenants try to turn off more server, the
delay cost will increase more than the first time he/she turns
off the server. We further assume the truthfulness of tenants,
i.e., each tenant reveals a true Ci() that provides reasonable
cost for his/her power reduction.

For the operator side, we consider a market mechanism
for the saving energy allocation, based on supply function
bidding [38]. The operator offers financial reward to tenants
to incentive them to reduce energy. He/she chooses a reward
price p to clear the market (p can be dollars). This price p
can stimulate the enthusiasm of tenants saving energy. It’s
quite easy to understand that the higher price can appeal more
tenants to join in. We consider all tenants are price-taking
customers in colocation. We assume that the relation between
qi and p is

qi = bi × p, (2)

each tenant submits a bid to operator as the response for
reward price. We use the linear bid Eqn. (2) just for the ease of
writing. Other functions f(p) that are continuous, increasing,
strictly convex and with f(0) = 0 can also apply here. Here bi
is the bid submitted by tenant i. We assume that each tenant’s
“supply” function is parameterized by a single parameter bi



2377-3782 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2019.2904867, IEEE
Transactions on Sustainable Computing

and it reflects the saving capability of tenant i. The total energy
reduction by all tenants is

E =
N∑
i=1

bi × p. (3)

We further use the following denotations to denote the sum
bid (B) of all tenants and the sum bid (B−i) except tenant i.

B =
∑

bi, (i ∈ N), B−i = B − bi, (i ∈ N). (4)

B. Utility of Tenants

The main concern of tenants is the utility for energy saving.
This reward is based on the reward offered by operator and the
cost incurred by energy reduction. We use Wi to denote the
reward provided by the operator and ui to denote the utility
of tenant i.

ui = Wi − Ci(qi), Wi = p× qi, (5)

Wi is decided by the reward price and energy reduction
from tenant i. If tenants want to participate into the reward
competition, they need to decide their bids (bi) and submit
them to the operator.

C. Utility of Colocation Operator

The main concern of operator is potential of energy saving
in colocation during the whole period. After collecting bids
from all tenants, the colocation operator estimates the total
amount of energy reduction and further estimates the utility
for demand response. The utility is according to two key
factors. One is the financial compensation from the electric
power company due to responding to the demand response
signal. The other one is the total cost for paying tenants who
participate in the energy saving. Here we ignore the renewable
energy and consider it in section IV. We use K(·) to denote the
financial compensation from the electric power company and
Co(·) to denote the cost for the operator. Then the operator’s
utility is defined as

R(E) = K(E)− Co(E), (6)

we assume the function K(·) is a continuously differentiable,
non-decreasing and concave function. Similarly, this kind of
utility modeling is widely used when designing schemes to
network economics [39] [40] [41]. The operator’s cost Co(E)
is the sum reward offered to tenants, i.e., the market clearing
price times the total power reduction from the tenants as shown
in Eqn. (39).

III. THE HIERARCHICAL MARKET

From the above system model, colocation is divided into a
two-level structure. The first level is the operator responses to
the electricity company and also interacts with tenants. The
second level is tenants decide and submit their bids. Both
the operator and tenants seek financial benefits without any
cooperation. Hence, this structure can be seen as a hierarchical
noncooperative problem and can be analyzed as a Stackelberg

game [26]. In this section, we mainly analyze the equilibrium
status between both sides in colocation.

In a Stackelberg game, each player is rational and aims to
maximize their own utility. There are two different types of
players in such a game: leader(s) and followers. Leaders make
the first move and decide their best strategy. Then the followers
determine their best strategies accordingly. The best strategy
means the strategy can maximize their own utility. Both
leaders and followers determine their best strategies based on
the other players’ responses. The Stackelberg equilibrium is
usually regarded as the solution to this game [26].

In this work, the colocation operator is the only leader and
those tenants who want to participate into the energy saving
are the followers. The operator first decides a reward price
and communicates it to the tenants. After receiving the price,
those tenants calculate their energy reduction and decide their
bids. Then they submit their bids to the colocation operator.
The operator collects the bids and then adjusts the reward
price for the second time if the total rewards for tenants
is beyond his/her budget. The tenants follow the operator’s
strategy and change their strategies. It is easy see that this is
an iteration process. We prove that the iteration converges to
an equilibrium. At the equilibrium, neither the operator nor
the tenants can change their own strategies to improve their
utility.

A. Nash Equilibrium among Tenants

Tenants compete for rewards offered by operator. We an-
alyze the equilibrium among tenants. First, by manipulating
Eqn.(1), (2), (3) and Eqn.(5), we have the utility of tenant i is

ui(bi, p) = bi × E2 ÷ (B)2 − Ci(bi × E ÷B), (7)

The derivative of Eqn. (7) is

∂ui
∂bi

=
E2

B2
[
B−i − bi

B
− B−i

E
× C ′i(bi ×

E

B
)]. (8)

Using Eqn.(4), Eqn. (8) is equivalent to

∂ui
∂bi

=
E2

(B−i + bi)2
[
B−i − bi
B−i + bi

− B−i
E
× C ′i(bi ×

E

B−i + bi
)].

(9)

Because Ci(·) is continuous, increasing, strictly convex and
with Ci(0) = 0, we have

B−i
E
× C ′i(bi ×

E

B−i + bi
) > 0 (10)

Let l = bi × E
B−i+bi

, then we have

∂l

∂bi
=

E ×B−i
(B−i + bi)2

> 0 (11)

From Eqn. (10) and Eqn. (11), we can see that C ′i(bi ×
E

B−i+bi
) is increasing as bi. The reason is that in Eqn.(9), the

left part of the minus sign is no greater than one. There are
two different cases for the right part of the minus sign. One is
that it is no less than 1, and the other is that it is less than 1.
For the first case, ∂u2

i

∂2bi
is always less than zero. Thus utility
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ui is maximized when bi = 0 given B−i. For the second case,
the second derivative of ui is

∂u2

∂2bi
= − 2E2

(B−i + bi)3
[
B−i − bi
B−i + bi

− B−i
E

C ′i(
bi × E
B−i + bi

)]+

E2

(B−i + bi)2
[− 2B−i

(B−i + bi)2
− B−i

E
C ′′i (

bi × E
B−i + bi

)
B−i × E

(B−i + bi)2
].

(12)

If B−i−bi
B−i+bi

is no less than B−i

E C ′i(
bi×E
B−i+bi

), ∂u2

∂2bi
is less than

zero. That means ui is concave and ui is maximized when
∂u
∂bi

is equal to zero. That is

B−i − bi
B−i + bi

− B−i
E

C ′i(
bi × E
B−i + bi

) = 0. (13)

Thus the solution to Eqn. (13) maximizes utility ui. If B−i−bi
B−i+bi

is less than B−i

E C ′i(
bi×E
B−i+bi

), it is difficult to decide whether
the second derivative of ui is greater or equal to zero. But we
know that the first derivative of ui is less than zero, i.e., ui
increases as to bi. Thus ui is maximized when bi = 0 given
B−i as mentioned above. Putting them together, we have

b∗i = 0 or
B∗−i − b∗i
B∗−i + b∗i

−
B∗−i
E

C ′i(
b∗i × E
B∗−i + b∗i

) = 0, (14)

where b∗i denotes the best bid (or strategy) for tenant i, and
B∗−i denotes the sum best bids except tenant i. Accordingly,
we have the following theories.

Lemma 1: If b∗i is the best strategy at a Nash Equilibrium
game, then b∗i < B∗−i =

∑
b∗j − b∗i (i ∈ N, j ∈ N), and each

tenant i reduce less than E
2 energy at the equilibrium.

Proof: When b∗i = 0, this lemma holds. When Eqn. (13)
is true, B∗−i−b

∗
i

B∗−i+b
∗
i

must be positive because the second term in
Eqn. (13) is positive. So lemma 1 holds.

Corollary 2: No Nash equilibrium exists when |N | = 2.
Proof: This corollary follows Lemma 1.

Theorem 3: If |N | > 2 , the game among tenants has a
unique Nash Equilibrium.

Proof: To prove theorem 3, we first see the following
convex optimization problem.

Fi(qi) = [1 +
qi

E − 2qi
Ci(qi)]−

∫ qi

0

[
E

(E − 2xi)2
Ci(xi) + p]dx

(15)

The first derivative of Eqn. (15) is

F ′i (qi) = (1 +
qi

E − 2qi
)C ′i(qi)− p (16)

The second derivative of Eqn. (15) is

F ′′i (qi) =
E

(E − 2qi)2
C ′i(qi) + (1 +

qi
E − 2qi

)C ′′i (qi) > 0

(17)

Thus we can see that Fi(qi) is strictly convex. When |N | > 2,
the Nash equilibrium of the game among tenants solves the
following convex optimization problem

min
0<qi<

E
2

ΣNi=1 Fi(qi), (18)

s.t. ΣNi=1 qi = E. (19)

Because Fi(qi)(qi ∈ [0, E2 ]) is strictly convex, the optimization
problem Eqn. (18)(19) is a strictly convex problem and thus
has a unique solution. According to the optimality condition
[42], the unique solution q∗i is determined by

F ′i (q
∗
i )(qi − q∗i ) ≥ 0 (20)

Further, the unique solution of the convex optimization prob-
lem Eqn. (18)(19) must satisfy the following conditions:

[p∗ − (1 +
q∗i

E − 2q∗i
)C ′i(q

∗
i )](qi − q∗i ) ≤ 0, (21)

ΣNi=1 q
∗
i = E, (22)
p∗ > 0. (23)

With the Nash equilibrium in Eqn.(14), we have

[
B∗−i − b∗i
B∗−i + b∗i

−
B∗−i
E

C ′i(
b∗i × E
B∗−i + b∗i

)](bi − b∗i ) ≤ 0. (24)

Then, using Eqn.(2) and Eqn.(3), we furthermore have

q∗i =
E × b∗i
B∗−i + b∗i

, (25)

B∗−i =
E × b∗i
qi∗

− b∗i . (26)

Putting Eqn.(26) into Eqn.(24), we have the following deduc-
tion:

[

E·b∗i
q∗i
− 2b∗i

Σb∗i
−

E·b∗i
q∗i
− b∗i
E

C ′i(q
∗
i )](bi − b∗i ) ≤ 0 (27)

⇒ b∗i [
E − 2q∗i
Σb∗i · q∗i

− E − q∗i
E · q∗i

C ′i(q
∗
i )](bi − b∗i ) ≤ 0

⇒ q∗i
b∗i
· b∗i [

E − 2q∗i
Σb∗i · q∗i

− E − q∗i
E · q∗i

C ′i(q
∗
i )](bi − b∗i ) ≤ 0

⇒ [
E − 2q∗i

Σb∗i
− (1− q∗i

E
)C ′i(q

∗
i )](bi − b∗i ) ≤ 0. (28)

According to Lemma 1, E−2q∗i is greater than zero. Eqn. (28)
mutiplied by E

E−2q∗i
can not change the inequality. Thus,

[
E

Σb∗i
− E − q∗i
E − 2q∗i

C ′i(q
∗
i )](bi − b∗i ) ≤ 0. (29)

We furthermore insert Eqn.(3) into Eqn.(29), and thus have
the following inequality

[p∗ − (1 +
q∗i

E − 2q∗i
)C ′i(q

∗
i )](bi − b∗i ) ≤ 0, (30)

⇒ [p∗ − (1 +
q∗i

E − 2q∗i
)C ′i(q

∗
i )](bi · qi − q∗i ) ≤ 0. (31)

Because p∗ is greater than zero and bi is arbitrary, Eqn. (31)
is equivalent to Eqn. (24). Moreover, Eqn.(31) is equivalent to
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Eqn. (21). Thus the Nash equilibrium satisfies the optimality
conditions Eqn. (21) to (23) when |N | > 2, and solves the
optimization problem Eqn. (18)(19). Finally, this optimization
problem has a unique optimum solution, hence the Nash
equilibrium exists and it is unique. The theorem holds.

When tenants reach the unique Nsh equilibrium, no tenants
can improve their utility by changing their own bids. If there
are n tenants participating in the market and each one with
q∗i > 0, we can know that n ≥ 3 according to Lemma 1.
Since Fi(qi) is convex, there exists at least one point (tenant
k, k ∈ N ) that makes F ′k(q∗k) equal to zero. That is

(1 +
qk

E − 2qk
)C ′k(q∗k)− p∗ = 0, (32)

p∗ = (1 +
qk

E − 2qk
)C ′k(q∗k). (33)

We use Gk(qk) to denote the right part of above equation:

Gk(qk) = (1 +
qk

E − 2qk
)C ′k(q∗k) > 0. (34)

The first derivative of Gk(qk) is

G′k(qk) =
E

(E − 2qk)2
C ′k(qk) + (1 +

qk
E − 2qk

)C ′′k (qk) > 0.

(35)

Thus Gk(qk) increases as to qk. When |N | ≥ 3, we have

Gk(
E

N
) ≤ Gk(

E

3
) (36)

Because q∗j is less or equal than E
N , we have

p∗ ≤ G(
E

N
) ≤ G(

E

3
) = C ′k(

E

3
) (37)

From the above inequality, we can see that when |N | is greater
than 3, there is at least one Nash equilibrium, and p∗ is no
greater than C ′k(E3 ).

B. The Stackelberg Equilibrium

This subsection analyzes the two-level game between the
operator and tenants. When the tenants submit their a profile
of bids (b), the operator tries to decide the best strategy by
maximizing the utility function Eqn. (6). We assume that

K(E) = a× log(E + 1) (38)

Here a is an adjustment coefficient. E does not involve
the renewable generation and we will discuss it later. When
E = 0, K(E) is 0 and as E increases K(E) increases. More
commonly as K(E) increases faster, K(E) increases more and
more slowly. The cost of the operator is the reward offered to
the tenants. This cost Co(·) is

Co(E) = E × p = E × E

B
. (39)

Thus, the operator’s utility is

R(E,b) = a log(E + 1)− E2

B
. (40)

Based on Eqn. (40), we have the following definition.

Definition 1 (Best Response for the Operator): The best
response of the operator is the best strategy for the operator
with the tenants’ bids b.

E(b) := arg maxR(b). (41)

Definition 2 (Stackelberg Equilibrium): A stackelberg equi-
librium is a strategy E∗ for the operator and a profile of
strategies b∗ = (b∗)∀i for tenants,

E∗ = E(b∗) and (42)

b∗i = 0 or
B∗−i − b∗i
B∗−i + b∗i

−
B∗−i
E

C ′i(
b∗i × E
B∗−i + b∗i

) = 0,∀i. (43)

The first and second derivatives of Eqn. (40) are

R′(E,b) =
a

E + 1
− 2E

B
,

R′′(E,b) = − a

(E + 1)2
− 2

B
. (44)

We can see that the second derivative of Eqn. (40) is less
than zero, and R(E) is a concave function. Hence, R(E) is
maximized when R′(E) = 0. We thus have

a

E∗ + 1
− 2E∗

B
= 0, E∗(b) =

√
a ·B

2
+

1

4
− 1

2
(45)

After tenants submit their bids, the operator can calculate the
best amount of energy reduction by Eqn. (45) to maximize the
utility. This best decision is dependent on tenant’s bids and
the financial compensation from the electric power company.
Since the noncooperative game among tenants has a unique
Nash Equilibrium, E∗ is also unique according to Eqn. (45).
We have the following major theorem.

Theorem 4: The two-level market (or the Stackelberg game)
between the operator and tenants has a unique Stackelberg
equilibrium (E∗,b∗).

Stackelberg game brings a win-win situation for colocation.
Both operator and tenants receive financial benefits in the
game. It also proves that operator successfully split the in-
centive of demand response. In Stackelberg equilibrium, both
operator and tenants can not move forward to maximize their
benefits. So a reward price provided by operator is accepted
by tenants and a profile of bids offered by tenants is received
by operator. Then both sides calculate their financial benefits
according to the reward price and bids.

C. Iterative biding

The above subsections present the Stackelberg equilibrium
for on the two-level market. This subsection provides the
iterative process between the operator and tenants and shows
how to converge to the equilibrium. The iteration is as follows.

(1) Initialization: the operator first communicates the mes-
sage of energy reduction and the initial value p(0). This value
can be estimated from the historical data.

(2) kth−iteration: (i) Based on receiving the reward price
p(k) from the operator, each tenant i will decide their bids by

bi(k) = [
F
′−1
i (p(k))

p(k)
]+. (46)
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Here Eqn.(46) is based on the inverse function of Eqn.(2) and
Eqn.(33). Then the tenants submit these bids to the colocation
operator. (ii) After collecting all tenants’ bids, the operator
conducts updates accordingly. There are two steps. First, the
operator calculates the best total amount of energy reduction
by.

E(k) =

√
a ·Bi(k)

2
+

1

4
− 1

2
, B(k) =

N∑
i=1

bi(k). (47)

The second step is to decide the next round reward price based
on the total amount of energy reduction.

p(k + 1) = [p(k)− r(B(k) · p(k)− E(k))]+. (48)

The scalar r is called the modulus of p(·), which is a constant
in [0, 1). In each iteration, both the operator and the tenants
play their best response to the other’s best strategies. One key
question here is whether the iteration bidding will converge
to a Stackelberg equilibrium. In the rest of this section, we
prove that it surely converges to the equilibrium. To prove
this is equivalent to show that the above iteration process is a
contraction mapping [42]. The proof is as follows.

We rewrite the above iterative process as

p(k + 1) = T (p(k)), k ∈ [0, N ]. (49)

where T is a mapping from a subset Z(p(k) ∈ Z) of R into
itself. Here, we assume that x is equal to p(k) and y is equal
to p(k + n), (n ∈ N), and y is equal to x+ t, (t ∈ R). Thus,

T (x) = x− r(B · x− E). (50)

Because E =
√

a·B
2 + 1

4 −
1
2 , we have

T (x) = x− r[B · x− (

√
a ·B

2
+

1

4
− 1

2
)]. (51)

We assume that when p(k+n) = y,
∑N
i=1 b

′

i(k+n) = B
′
(k+

n) and the energy reduction is E
′
. B

′
(k + n) is written B

′
.

T (y) = T (x+ t) = x+ t− r[B
′
· (x+ t)− E

′
]

= x+ t− r[B
′
· (x+ t)−

√
a ·B′

2
+

1

4
+

1

2
]. (52)

Next we calculate the difference between T (y) and T (x) by
comparing Eqn. (51) and Eqn. (52).

T (y)− T (x)

= t+ r(B · x−
√
a ·B′

2
+

1

4
+

1

2

−B
′
· x−B

′
· t+

√
a ·B′

2
+

1

4
− 1

2
) (53)

If Eqn. (49) is a contraction mapping, it must have have the
following property:

‖T (y)− T (x)‖ ≤ α‖y − x‖ = α‖t‖, (54)

where ‖ · ‖ is a norm and α is a constant in [0, 1). We analyze
the connection between the reward price (p) and the bid sum

(B). When |N | > 2, the Nash equilibrium of the game among
tenants solves the problem Eqn. (18). Eqn. (18) is a convex
optimization problem and has a unique solution. Thus,

F
′

i (qi) = (1 +
qi

E − 2qi
)C
′

i(qi)− p. (55)

We assume that F
′

i (qi) is equal to M . If M is equal to zero,
the game reaches the Nash equilibrium. Furthermore, we can
obtain the unique solution when M is equal to zero. But
before reaching the equilibrium, M is a non-zero real value.
By manipulating Eqn.(55), we can have

(1 +
qi

E − 2qi
)C
′

i(qi)− p = M, qi =
E · (p+M − C ′i(qi))
2(M + p)− C ′i(qi)

(56)

Based on Eqn. (2) and Eqn. (56), we have

bi =
E · (p+M − C ′i(qi))

[2(M + p)− C ′i(qi)] · p
. (57)

Now we can see that bi deceases as to p, and B deceases as to
p. We return to prove the contraction mapping of the iteration
process. Based on Eqn. (53) and Eqn. (54), we have

‖T (y)− T (x)‖ = ‖t+ r(B · x−
√
a ·B

2
+

1

4
+

1

2

−B
′
· x−B

′
· t+

√
a ·B′

2
+

1

4
− 1

2
)‖ (58)

Because Eqn.(54) is greater than zero, we have

C
′

i(qi)−M < p < 2C
′

i(qi)−M. (59)

Because y > x, B
′

is greater than B. We thus have

‖T (y)− T (x)‖

≤ ‖t+ r(B · x−
√
a ·B

2
+

1

4

−B
′
· x−B

′
· t+

√
a ·B

2
+

1

4
)‖

= ‖t+ r(B · x−B
′
· x−B

′
· t)‖. (60)

When r is small enough, B · x−B′ · x−B′ < 0. We have

‖T (y)− T (x)‖ ≤ ‖t‖.
Hence, there must be an α that meets the following inequality.

‖T (y)− T (x)‖ ≤ α‖t‖ α ⊆ [0, 1]. (61)

And this proves that Eqn.(49) is a contraction mapping.

IV. CO-LOCATED RENEWABLE ENERGY

A colocation is usually co-located with renewable such as
wind or solar power given the need of sustainable development
and the lower cost of renewable [14]. This power gener-
ation provides further flexibility to optimize a colocation’s
power supply and thus maximize its economic performance.
Meanwhile, the uncertainty of renewable causes difficulty in
determining the optimal strategy for a colocation operator.
In this section, we address this difficulty and study how the
renewable generation impacts the operator’s strategy in the
Stackelberg game.
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A. Model of Renewable Energy

At the beginning of a demand response period, the colo-
cation operator predicts the amount of generated renewable
(or renewable output) for the period, which is then used to
make the best decision on E. We use a prediction error ε to
capture the renewable’s uncertainty, that is, ω = (1 + ε)ω̃,
where ω is the actual renewable output and ω̃ is the predicted
output. According to the standard assumptions in statistics,
we use unbiased prediction, that is, the mean E[ε] = 0 and
V[ε] = σ2 [43] [44]. In addition, we assume the maximum
amount of renewable generation is M . Then we have ω ≤M
and ω̃ ≤M .

B. Utility of Operator with Renewable Energy

In this part, we count in renewable energy to the utility
function of operator side in Data center. The utility of operator
is decided by two factors. One is the financial compensation
from the electric power company due to responding to the
demand response signal (K(·)). The other one is the total
cost for paying tenants who participate in the energy saving
(Co(·)). If the operator decides not to turn on renewable
facility, he/she only needs to set ω = 0. Otherwise, ω ≤ M
(maximum amount of renewable generation). The operator’s
utility function with the actual renewable generation is

R(E∗, ω) = K(E∗ + ω)− Co(E∗), (62)

The operation cost of renewable is negligible compared to the
price of electricity from power grid [23]. Based on previous
analysis (III section B), we can get the following results

E∗ =

√
a ∗B/2 +

1

4
− 1

2
− [ω]M0 (63)

Ẽ∗ =

√
a ∗B/2 +

1

4
− 1

2
− [ω̃]M0 (64)

Here E∗ is the best solution with respect to actual renewable
energy output and Ẽ∗ is the optimal solution with the predicted
renewable energy (ω = (1 + ε)ω̃). We only use ω̃ to estimate
Ẽ∗. When the operator counts the actual utility which he/she
gains, the actual renewable generation ω should be used.

C. Performance Analysis

The performance of (Eqn. (63) and Eqn. (64)) depends on
the accuracy of the predicted renewable power output. Because
if ω is equal to ω̃, the best solution is the same as the actual
results. This means our algorithm is efficient and effective. In
this subsection, we adopt competitive analysis to evaluate and
analyze our algorithm.

Competitive analysis is widely used to analyze online al-
gorithms, in which the performance of an online algorithm is
compared to the performance of an optimal offline algorithm
that can view future information (here is the actual renewable
output) in advance. An algorithm is competitive if its competi-
tive ratio, i.e., the ratio between its performance and the offline
algorithm’s performance, is bounded [29] [45]. Our approach
uses the on-line predicted renewable output to determine
the operator’s strategy. There is a need of understanding

the economic performance gap between the strategy based
on the predicted renewable and the actual optimal strategy.
Using competitive analysis right fills the need and will answer
questions such as how much is the gap and whether the gap
is bounded. For example, if the gap or the competitive ratio
is bounded by a linear relation with the prediction error, our
approach will derive rather good performance. If bounded by
an exponential relation, a small prediction error can cause large
performance degradation.

The competitive ratio η is defined as the ratio of expecta-
tions of utilities calculated with actual renewable generation
and with predicted renewable generation:

η =
E[R(E∗, ω)]

E[R(Ẽ∗, ω)]
(65)

Based on the assumption of renewable generation, we have a
lemma here.

Lemma 5: If the prediction error of renewable generation is
ε, and the expectation and variance are E[ε] = 0 and V[ε] =
σ2 respectively, we have E[ε+] ≤ σ

2 , E[ε−] ≥ −σ2 , where
ε+ = max(0, ε) and ε− = min(0, ε).

Lemma 5 gives the critical value of E[ε+] and E[ε−], and
this help us analyse the boundary of competitive ratio. We do
not repeat the proof of Lemma 5 in this paper which can be
found in [43]. We have another Lemma as following

Lemma 6: For E∗ given by Eqn.(63) and Ẽ∗ given by
Eqn.(64), we have E∗ = Ẽ∗ + ϕ, and ϕ = ϕ+ + ϕ−, where

ϕ+ = [−ω̃ ∗ ε−]
−M∗ε−

1+ε−
0 and ϕ− = [−ω̃ ∗ ε+]0

−M∗ε+
1+ε+

.

Proof: Based on ω = (1 + ε)ω̃ and Eqn.(63), we have
the following equation

E∗ =

√
a ∗B/2 +

1

4
− 1

2
− [(1 + ε)ω̃]M0 (66)

We assume that E∗ = Ẽ∗ + ϕ and ϕ = ϕ+ + ϕ−, and we
have

E∗ =

√
a ∗B/2 +

1

4
− 1

2
− [ω̃]M0 + ϕ (67)

From Eqn.(66) and Eqn.(67), we have

[(1 + ε)ω̃]M0 = [ω̃]M0 − ϕ
ϕ = [ω̃]M0 − [(1 + ε)ω̃]M0 (68)

Next we analysis Eqn.(68) with ε+ and ε− separately. First,
if ε = ε+, we have

ϕ = ω̃ − (1 + ε+)ω̃

ϕ = −ε+ ∗ ω̃ (69)

Because ω ≤M and ω̃ ≤M , we can get that

ω̃ ≤ M

1 + ε+
(70)

From Eqn.(69) and Eqn.(70), we can get

ϕ− = [−ε+ ∗ ω̃]0
−M∗ε+

1+ε+

(71)
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Second, if ε = ε−, we have

ϕ = ω̃ − (1 + ε−)ω̃ (72)
ϕ = −ε− ∗ ω̃ (73)

Also since 0 ≤ ω ≤M and 0 ≤ ω̃ ≤M , we have

ω̃ ≤ M

1 + ε−
(74)

From Eqn.(73) and Eqn.(74),we have the following

ϕ+ = [−ε− ∗ ω̃]
−M∗ε−

1+ε−
0 (75)

We now finish proof and Lemma 6 holds.
Based on Lemma 5 and Lemma 6, we introduce our main

theorem of this section. This theorem bounds the competitive
ratio. It also proves that if the prediction of renewable gener-
ation is accurate, the operator’s utility is close to the optimal.

Theorem 7: If the variance of the prediction error of the
renewable generation is bounded by σ2, the utility given by
Eqn.(62) has a competitive ratio(denoted by η), and we also
have that η = E[R(E∗,ω)]

E[R(Ẽ∗,ω)]
≤ 1 + χ ∗ σ, where

χ =

(
K ′(Ẽ∗ + ω)− C ′o(Ẽ∗)

)
ω̃

2E[K(Ẽ∗ + ω)− Co(Ẽ∗)]
. (76)

Proof: Based on the definition of competitive ratio in
Eqn.(65), the following deduction try to find the bound of
the ratio.

η =
E[K(E∗ + ω)− Co(E∗)]
E[K(Ẽ∗ + ω)− Co(Ẽ∗)]

=
E[K(Ẽ∗ + ϕ+ ω)− Co(Ẽ∗ + ϕ)]

E[K(Ẽ∗ + ω)− Co(Ẽ∗)]

=
E[K(Ẽ∗ + ω)−K(Ẽ∗ + ω) +K(Ẽ∗ + ϕ+ ω)]

E[K(Ẽ∗ + ω)− Co(Ẽ∗)]

+
E[Co(Ẽ∗)− Co(Ẽ∗)− Co(Ẽ∗ + ϕ)]

E[K(Ẽ∗ + ω)− Co(Ẽ∗)]

= 1 +
E[K(Ẽ∗ + ϕ+ ω)−K(Ẽ∗ + ω)]

E[K(Ẽ∗ + ω)− Co(Ẽ∗)]

− E[Co(Ẽ∗ + ϕ)− Co(Ẽ∗)]
E[K(Ẽ∗ + ω)− Co(Ẽ∗)]

(77)

Because K(·) is concave and Co(·) is strictly convex, we
introduce the properties of concave and convex function to

boundary the competitive ratio. Then we have the following
inequalities

η ≤ 1 +
E[K ′(Ẽ∗ + ω) ∗ ϕ− C ′o(Ẽ∗) ∗ ϕ]

E[K(Ẽ∗ + ω)− Co(Ẽ∗)]

= 1 +

(
K ′(Ẽ∗ + ω)− C ′o(Ẽ∗)

)
∗ E[ϕ]

E[K(Ẽ∗ + ω)− Co(Ẽ∗)]

≤ 1 +

(
K ′(Ẽ∗ + ω)− C ′o(Ẽ∗)

)
∗ E[ϕ+]

E[K(Ẽ∗ + ω)− Co(Ẽ∗)]

= 1 +

(
K ′(Ẽ∗ + ω)− C ′o(Ẽ∗)

)
∗ E[−ε− ∗ ω̃]

E[K(Ẽ∗ + ω)− Co(Ẽ∗)]

≤ 1 +

(
K ′(Ẽ∗ + ω)− C ′o(Ẽ∗)

)
ω̃

2E[K(Ẽ∗ + ω)− Co(Ẽ∗)]
σ

(78)

Thus we have the following

η ≤ 1 + χ ∗ σ, (79)

and Theorem 7 holds.
There are two important points from the above analysis.

First, since χ in Eqn. (76) is constant, we can see that
by Theorem 7, the competitive ratio has a linear relation
with the standard deviation (σ) of the renewable prediction
error. This result can be interpreted as that the economic
performance of the colocation operator will be rather good if
the renewable prediction is enough accurate. The competitive
ratio decreases to 1, when the prediction error decreases to
0. (More description about this effect can be found in the
Evaluation section.) Second, it is worth noting that the above
analysis does not rely on any assumptions on the distribution
of the prediction error other than zero mean and the bounded
variance. This confirms that our analysis approach is more
generalized compared to many existing analysis approaches.

V. EVALUATION

Till now we have proposed a two-level market mechanism
for colocations, provided theoretical a Nash equilibrium and
a Stackelberg equilibrium for the mechanism, and further
analyzed the economic performance of colocation demand re-
sponse with co-located renewable. In this section, we highlight
the benefits of the market design using extensive simulations.

A. Simulation Setup

We consider a colocation with N tenants. The cost function
of tenant i is set as Ci(qi)= αi ∗ qi + βi ∗ q2i , where αi is
randomly generated in the range of [1, 6] and βi is randomly
drawn from [1, 5]. Note that the evaluation does not confine
to a specific form of function, and other forms that satisfy the
properties in Section II are also feasible. The compensation
price (a in Eqn. (38)) is offered by the electric power company.
The parameter N and a vary to allow sensitivity analysis
in this evaluation. The step size r in the iterative biding
(Section III-C) is set to 0.2. The total amount of energy
reduction E is initialized as 50 when starting biding iterations.
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(a) Sum of all tenant’s bids when the number of tenants (N) varies

(b) Reward price when the number of tenants varies (N)

Fig. 2. Convergence of the iterative biding by showing tenant’s sum bids and
reward price.

The actual renewable generation ω and the prediction error
(i.e., the standard deviation σ) also vary in the simulation.

B. Simulation Results

In this section, we present simulation results about mech-
anism convergence, sensitivity analysis for the market, and
co-located renewable.

1) Results on the Mechanism Convergence: Fig. 2 demon-
strates the convergence of the iterative biding. First, the
convergence speed is rather fast, that is, values of parameters
almost stay unchanged after tens of iterations. For example,
for all four curves (with four different numbers of tenants) as
shown in Fig. 2(b), the reward price nearly does not change
after 70 iterations. A similar observation based on the sum
bid of tenants can be also made from Fig. 2(a). Second,
the iteration process converges faster when the number of
tenants (N) is larger. For example, as shown in Fig. 2(b), the
curve of N = 10 converges faster than other three curves of
N = 4, 6, 8. The reason is as follows. When the number of
tenants is larger, their sum bid also becomes more, as shown
in Fig. 2(a). A larger sum bid, i.e., a larger B in Eqn. (48), the
step between two consecutive iterations becomes larger, and
thus the convergence speed grows.

2) Impact of the Number of Tenants on the Market: Fig. 3
shows how the market varies with number of tenants (N). From
Fig. 3(a), we can see that the reward price decreases as the
number of tenants (N) increases. For example, the reward price
when N = 4 is the largest among all the four settings. The
reason here is two-fold. When the number of tenants is smaller,
the operator needs each individual tenant to contribute more
energy saving. Thus, the operator has to increases the reward
price to motivate tenants to do so. Further, this result infers
that it is not beneficial for a single tenant to fake and divide
himself/herself as multiple smaller tenants.

(a) Reward price (b) The operator’s compensation,
cost, and utility

(c) Tenant 1’s reward, cost, and
utility

(d) Energy reduction

Fig. 3. Sensitivity analysis for tenants and the operator when the compensa-
tion price (a in Eqn. (38)) equals 100 and the number of tenants (N) varies.

Fig. 3(b) illustrates how the operator’s situation changes
with the number of tenants. The blue bars represent the
compensation received by the operator from the electric power
company, and the white bars represent the cost of the operator,
i.e., the total reward offered to tenants. The red curve is
the operator’s utility under four different settings. First, the
compensation increases as the number of tenants grows, so
does the utility. The reason is as follows. More tenants
participating into the market results in more energy saving,
demonstrated by Fig. 3(d). With more energy reduction, the
operator can receive more compensation from the electric
power company. Further, since the operator’s cost, i.e., the
total reward offered to tenants, increases slightly, as shown by
white bars in Fig. 3(b). The operator’s utility also becomes
larger with an increased number of tenants. Furthermore, the
operator’s utility is always positive, and thus the operator
is motivated and beneficial to participate into the market by
offering reward to tenants.

Fig. 3(c) shows how a tenant’s (here uses Tenant 1 as an
example) situation changes with the number of tenants. The
blue bars represent the reward received by Tenant 1, the white
bars represent Tenant 1’s cost caused by energy reduction,
and the red curve is the tenant’s utility. We can see that
the tenant’s reward and cost both decrease as the number of
tenants increases. The major reason for this observation is that
tenants participating into the market compete for the reward.
Because of the competition, the reward price declines (as
shown in From Fig. 3(a)) and energy reduction of individual
tenant also goes down. Hence, each tenant’s reward and cost
decreases accordingly. Further, by the red curve, the tenant’s
utility declines as the number of tenants increases. An insight
here is that the number of tenants willing to participate will
saturate after the total number of tenants reaches a certain
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(a) Reward price (b) The operator’s compensation,
cost, and utility

(c) Tenant 1’s reward, cost, and
utility

(d) Energy reduction

Fig. 4. Sensitivity analysis for tenants and the operator the number of tenants
(N) equals 4 and the compensation price (a in Eqn. (38)) varies.

threshold (which is a very large number). At that time, it is
not beneficial for new tenants to participate into the market
anymore. By contrast, before that time, tenants always have
positive utility, which motivates them to participate into the
market. Furthermore, seeing both Fig. 3(b) and Fig. 3(c), we
can conclude a win-win situation, i.e., with positive utility for
both the operator and tenants.

Fig. 3(d) shows that the amount of energy reduction in-
creases as the number of tenants grows. More tenants par-
ticipating into the market results in higher competition on
the reward among them. From Fig. 3(b), the total reward
stays nearly unchanged with the number of tenants. So after
splitting the total reward among more tenants, the amount of
each tenant’s energy reduction goes down. In spite of this,
multiplied by a larger number of tenants, the total energy
reduction still becomes more. The observation infers that more
tenants participating into the market results in more benefits
for the operator. This in turn follows the result in Fig. 3(b).

3) Impact of the Compensation on the Market: Fig. 4
depicts how the market varies with the compensation price (a
in Eqn. (38)), which is offered by the electric power company
to the operator. From Fig. 4(a), we can see that the reward
price grows as the compensation price increases. A higher
compensation price tends to motivate the operator to save
more energy (and thus more compensation). To achieve this,
the operator in turn needs to motivate tenants to reduce more
energy, and thus increases the reward price. By Fig. 4(d), we
can see that the higher reward price (caused by the increased
compensation price) indeed leads to more energy reduction
from tenants.

Fig. 4(b) illustrates how the operator’s situation changes
with the compensation price. The blue bars represent the
compensation received by the operator, and the white bars

Fig. 5. The competitive ratio varies with the standard deviation and the sum
bid B of all tenants at the equilibrium.

represent the cost of the operator. First, the compensation
increases as its price increases, so does the operator’s cost.
As mentioned above, a higher compensation price results
in more energy reduction, as shown in Fig. 4(d). Increased
compensation price together with increased energy reduction
causes the compensation increases very fast. Second, the red
curve shows that the operator’s utility also increases as the
compensation price becomes higher. The reason is that the
compensation increases much more than the operator’ cost.
Thus their difference, i.e., the utility, increases accordingly,
instead of decreasing.

Fig. 4(c) shows how a tenant’s (here uses Tenant 1 as an
example) situation changes with the compensation price. The
blue bars represent the reward received by the tenant, the white
bars are Tenant 1’s cost, and the red curve is the tenant’s
utility. Similarly, the tenant’s reward, cost, and utility all go
up as the compensation price becomes higher. This is also
because of increased reward price and more energy reduction
as mentioned above. By all the four figures, we can see that a
higher compensation price more benefits not only the operator
but also tenants participating the market.

4) Results about the Co-located Renewable: Fig. 5 demon-
strates how the competitive ratio varies with standard deviation
of renewable prediction error (σ) and the sum bid of tenants
(B). First, we can see that when the standard deviation
increases, the competitive ratio increases, i.e., the algorithm’s
performance declines. This observation well follows the in-
tuition. Second, the competitive ratio linearly varies with the
standard deviation. These two observations also validate the
correctness of Theorem 7. Further, the proposed approach
has rather good performance when the prediction is accurate
enough. For example, when the standard deviation is less than
10%, the competitive ratio is less than 1.1. It is less than
1.2 when the standard deviation is less than 20%. Thus, the
algorithm is well deployable in practice when the prediction
error is acceptable. Third, as the sum bid (B) at the equilibrium
increases, the competitive ratio decreases. For example, when
σ = 0.3, the competitive ratio is about 1.35 as B = 1 and
it is about 1.2 as B = 1.5. Fourth, the increasing rate of
the competitive ratio decreases as the sum bid (B) increases.
For example, the increasing rate (i.e., the slope) of B = 1 is
larger than that of others such as Bi = 2. The reason for these
two observations is that when more tenants join in the game or
the demand response, the bids will increase. The operator thus
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Fig. 6. The competitive ratio varies with the actual renewable generation.

receives more energy saving from tenants, and the impact of
renewable for the compensation becomes relatively less. That
is, more tenants offering more energy saving will offset the
uncertainty of renewable. These observations partly confirm
that demand response is key to accommodate renewable in
our power systems.

Fig. 6 shows the competitive ratio varies with actual re-
newable generation (ω). From the figure, we can see that
the competitive ratio increases as actual renewable output
increases. This observation indicates that it does not encourage
the operator to increase the renewable capacity aggressively
but wisely. For example, the competitive ratio is less than 1.1
when actual renewable is less than 1, while it becomes over 1.8
when actual renewable is 3. Thus, we can conclude that it is
better for the colocation operator to incorporate hybrid energy
sources, for example, one part uses co-located renewable for
a cost-saving purpose and the other part uses reliable sources
such as the power grid to guarantee availability of the service.
This insight also follows the key idea of GreenPlanning [23],
that is, incorporating multiple energy sources to strike a
balance between different goals. Further, this figure also shows
that the competitive ratio increases as the renewable prediction
error of renewable increases, which is also observed by Fig. 5.
For example, the curve of σ = 0.7 is above all other curves
of smaller σ.

VI. CONCLUSIONS

Demand response is a crucial functionality of the power
grid to realize the key vision of demand-follow-supply. This
paper is focused on a notably promising demand response
resource, colocation data centers, and specially studies mecha-
nism design for colocation demand response in presence of co-
located renewable. We propose a hierarchical demand response
scheme that jointly addresses the split incentive between a
colocation operator and its tenants, and the uncertainty of
co-located renewable. The scheme is based on a two-level
market mechanism, by which tenants receive rewards from the
operator given their power reduction and the operator obtains
financial compensation from the electric power company.
The mechanism provably converges to a unique equilibrium
solution, where neither the operator or tenants can improve
their individual utility by changing their own strategies. Fur-
ther, we present a stochastic optimization based algorithm to
optimize economic performance for the colocation operator at
the equilibrium. Performing competitive analysis demonstrates

a robust guarantee of the operators’s financial gain in terms
of the renewable prediction error. Finally, we evaluate the
designed scheme using extensive simulations. Results illustrate
the win-win situation between a colocation operator and its
tenants, and validate the linear relation between the operator’s
economic performance and the renewable prediction error. As
to future work, we plan to study the truthfulness of the operator
and tenants, e.g., how to ensure tenants provide a reasonable
cost function for their power reduction, as well as extend
the current market mechanism to a setting of geographically
distributed data centers, which may have different demand
response periods and renewable generation.
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